

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Hibari DB 0.1.11 documentation

Hibari DB

A Distributed, Consistent, Ordered Key-Value Store

Hibari is a distributed, ordered key-value store with strong
consistency guarantee. Hibari is written in Erlang and designed for
being:

	Fast, Read Optimized: Hibari serves read and write requests in
short and predictable latency. Hibari has excellent performance
especially for read and large value operations

	High Bandwidth: Batch and lock-less operations help to achieve
high throughput while ensuring data consistency and durability

	Big Data: Can store Peta Bytes of data by automatically
distributing data across servers. The largest production Hibari
cluster spans across 100 of servers

	Reliable: High fault tolerance by replicating data between
servers. Data is repaired automatically after a server failure

Hibari is able to deliver scalable high performance that is
competitive with leading open source NOSQL (Not Only SQL) storage
systems, while also providing the data durability and strong
consistency that many systems lack. Hibari’s performance relative to
other NOSQL systems is particularly strong for reads and for large
value (> 200KB) operations.

As one example of real-world performance, in a multi-million user
webmail deployment equipped with traditional HDDs (non SSDs), Hibari
is processing about 2,200 transactions per second, with read latencies
averaging between 1 and 20 milliseconds and write latencies averaging
between 20 and 80 milliseconds.

Distinct Features

Unlike many other distributed databases, Hibari uses “chain
replication methodology” and delivers distinct features.

	Ordered Key-Values: Data is distributed across “chains” by key
prefixes, then keys within a chain are sorted by lexicographic order

	Always Guarantees Strong Consistency: This simplifies creation
of robust client applications
	Compare and Swap (CAS): key timestamping mechanism that
facilitates “test-and-set” type operations

	Micro-Transaction: multi-key atomic transactions, within
range limits

	Custom Metadata: per-key custom metadata

	TTL (Time To Live): per-key expiration times

Hibari’s Origins

Hibari was originally written by Cloudian, Inc., formerly Gemini
Mobile Technologies, to support mobile messaging and email services.
Hibari was open-sourced under the Apache Public License version 2.0 in
July 2010.

Hibari has been deployed by multiple telecom carriers in Asia and
Europe. Hibari may lack some features such as monitoring, event and
alarm management, and other “production environment” support services.
Since telecom operator has its own data center support infrastructure,
Hibari’s development has not included many services that would be
redundant in a carrier environment.

We hope that Hibari’s release to the open source community will close
those functional gaps as Hibari spreads outside of carrier data
centers.

Tip

What does Hibari mean? The word “Hibari” means skylark in
Japanese; the Kanji characters stand for “cloud bird”.

A Quick Tour

TODO

User Documentation

	== Application Developer’s Guide ==

	Introduction

	Why Hibari?

	Getting Started

	The Hibari Data Model

	Hibari Client API Overview

	Client API: Native Erlang

	Client API: UBF

	Client API: Thrift

	Building Hibari from Source

	Contributing to Hibari

System Administration

	== System Admin Guide ==

	Introduction

	Hibari’s Main Features in Broad Detail

	Building A Hibari Database

	Hibari Architecture

	The Admin Server Application

	Hibari System Information: Configuration Files, Etc.

	The Life of a (Logical) Brick

	Dynamic Cluster Reconfiguration

	The Partition Detector Application

	Backup and Disaster Recovery

	Hibari Application Logging

	Hardware and Software Considerations

	Administering Hibari Through the API

Hibari Community

TODO

Inside Hibari

	== Contributor’s Guide ==

Misc

	Copyright

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hibari Application Developer’s Guide (Hibari v0.1.11)

Date: 2015/03/22

Revision: 0.5.4

Copyright (C) 2005-2015 Hibari developers. All rights reserved.

Table of Contents

	Introduction
	Why NOSQL?

	Why Hibari?
	Engineered in Erlang

	Chain Replication for High Availability and Strong Consistency

	Easy, Affordable Scalability

	High Performance, Especially for Reads and Large Values

	Simple But Powerful Client API

	Production-Proven

	Hibari Benefits for Developers, System Administrators, and Businesses

	Getting Started
	System Requirements

	Required Third-Party Software

	Downloading Hibari

	Installing a Single-Node Hibari System

	Starting and Stopping Hibari on a Single Node

	Installing a Multi-Node Hibari Cluster

	Creating New Tables

	The Hibari Data Model

	Hibari Client API Overview
	Supported Operations

	Check and Swap (CAS)

	Micro-Transaction

	Client API: Native Erlang
	Data Insertion

	Data Retrieval

	Data Deletion

	Compound Operations

	Fold Operations

	brick_simple:add/6

	brick_simple:replace/6

	brick_simple:set/6

	brick_simple:rename/6

	brick_simple:get/4

	brick_simple:get_many/5

	brick_simple:delete/4

	brick_simple:do/4

	brick_simple:fold_table/7

	brick_simple:fold_key_prefix/9

	Client API: UBF
	The Hibari Server’s Implementation of the UBF Protocol Stack

	UBF representation of strings vs. binaries

	Steps for Using a UBF-based Protocol in Any Language

	The Hibari UBF Protocol Contract

	Using the UBF Client Library for Erlang

	Using the UBF Client Library for Java

	Using the EBF Client Library for Python

	Client API: Thrift
	The Hibari Thrift API

	Mapping UBF Contract Types to Thrift Types

	Mapping UBF Contract to Thrift Service

	Examples of using a Thrift client

	Mapping TBF Contract Responses From Thrift Client

	Building Hibari from Source
	Required Third Party Software

	Downloading Hibari

	Building the Hibari Release Package

	Building Hibari’s Documentation

	Building and Installing Erlang/OTP

	Contributing to Hibari
	GitHub, Git, and Repo

	Code, Branch, and Version Management

	Documentation

	Submitting Patches

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Introduction

Hibari is a production-ready, distributed, key-value, big data
store. In the emerging field of “NOSQL” solutions to today’s
mass-scale data storage challenges, Hibari stands out for several
reasons:

	Hibari is the only open source key-value database to couple Erlang
engineering with innovative chain replication technology. Erlang is
the ideal programming foundation on which to build a robust,
high-performance distributed storage solution. Chain replication
delivers high throughput and availability without sacrificing data
consistency.

	Hibari is the only open source key-value database built to the
exacting standards of the carrier-class telecom sector, and proven
in multi-million user telecom production environments.

	Hibari delivers a distinctive feature matrix that includes:
	Per-table options for RAM+disk-based or disk-only value storage

	Support for per-key expiration times and per-key custom meta-data

	Support for multi-key atomic transactions, within range limits

	A key timestamping mechanism that facilitates “test-and-set” type
operations

	Automatic data rebalancing as the system scales

	Support for live code upgrades

	Multiple client API implementations

This introductory chapter will briefly address the recent emergence of
NOSQL solutions to the challenges posed by the “Big Data” era before
turning to describe more fully the distinctive benefits that Hibari
provides to developers, administrators, and users of data-intensive
applications.

Why NOSQL?

The NOSQL “movement” is, first off, not an outright rejection of
traditional relational database management systems (RDBMS) but rather
a growing recognition that today’s data environment requires a diverse
storage toolset that is “Not Only SQL (NOSQL)”. Relational and NOSQL
data storage solutions should be viewed as complements, with each
approach better suited toward different types of applications and
services.

The main driver of NOSQL has been the proliferation of applications
and services that must store and serve terabytes or petabytes of data,
often while striving to guarantee “always-on” availability and low
latencies for end users. Organizations in many market sectors are
grappling with the advent of Big Data, including but not limited to:

	Web properties – coping with the massive data requirements of
search, e-commerce, social media, and user-generated content.

	Telecoms – managing and analyzing network logs and call data
records for multi-millions of subscribers.

	Utilities – managing and analyzing the enormous data volume
associated with smart grids.

	Financial services – storing and mining customer history data in
order to analyze and model risk.

	Retail analytics – click-stream analysis and micro-targeting.

	Biotech – genome analysis.

Organizations in these and other data-intensive environments have been
challenged to build data storage systems of unprecedented scale. Many
such organizations have found their needs ill-met by traditional data
storage approaches that center around relational database management
systems and specialized high-end hardware. In particular:

	Scaling up a single RDBMS instance doesn’t achieve nearly the
scale required, no matter how high-end the systems or how great the
expenditure.

	Scaling out by sharding the system over multiple RDBMS instances
entails enormous costs and enormous operational complexity, while at
the same time forfeiting much of the power of the relational model.

Wanting Big Data capacity without crippling cost and complexity, some
innovative organizations have sought a better way to scale. At the
same time, with an ever-expanding array of data usage scenarios, it’s
become apparent that not all scenarios require the complex querying
and management functionality associated with an RDBMS. For some
applications and services, SQL-structuring and strict ACID properties
are overkill. Worse, in some environments they’re expensive overkill
that can potentially hamstring service offerings in highly competitive
markets that demand flexibility and responsiveness.

In short, recent years have seen a proliferation of services that
require more data, with less structure.

Not surprisingly, some of the leading web enterprises have been at the
forefront of the NOSQL movement. In particular, Google with its
http://labs.google.com/papers/bigtable.html[BigTable paper] in 2006
and Amazon with its
http://s3.amazonaws.com/AllThingsDistributed/sosp/amazon-dynamo-sosp2007.pdf[Dynamopaper]
in 2007 had a profound effect on the NOSQL market. A number of NOSQL
solutions have drawn inspiration from either BigTable or Dynamo or
both, and in the past couple years several solutions have been
released into the open source community.

While NOSQL data storage solutions vary in their particulars, they
have these basic traits in common:

	A simplified data model. Data models vary across specific solutions,
and sometimes form the basis of a tripartite classification of NOSQL
systems into 1) key-value data stores (such as Dynamo and Hibari);
2) column-oriented data stores (such as BigTable); and 3)
document-oriented data stores (such as CouchDB). All variants,
however, are simpler and more flexible in data model than the
traditional RDBMS. That simplification tends to carry over to client
APIs as well.

	Distribution across multiple nodes based on commodity
PCs. Affordable Big Data capacity is achieved by scaling out across
tens, hundreds, or even thousands of commodity PCs. Data
partitioning schemes coupled with parallel processing of incoming
requests deliver the needed high performance.

	Replication of data objects across multiple nodes, to ensure high
availability in the event of component failures.

For much more on the history, merits, and design issues associated
with NOSQL storage solutions, consult with your favorite search
engine.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Why Hibari?

Hibari was developed internally by Cloudian, Inc. (formerly Gemini
Mobile Technologies), a leading producer of mass-scale messaging and
transaction systems for Tier 1 mobile operators in Asia, Europe, and
the Americas. Cloudian had need for a data store that was efficient,
fast, flexible, and scalable, as well as robust enough to withstand
the rigors of deployment in Tier 1 telecom production environments.
Dissatisfied with the then-available options, Cloudian in 2005 began
work on what came to be Hibari (the name is Japanese for skylark; the
kanji characters stand for “cloud bird”).

With the system having in recent years matured and been proven in
production, Cloudian released Hibari to the open source community in
July 2010 under the Apache 2.0 license. Cloudian regards the open
source community as the best venue in which Hibari can continue to
perfect and grow.

This section describes some of the distinctive features that make
Hibari a very attractive option for businesses and developers seeking
a modern Big Data storage system:

	link:#engineered-erlang[Engineered in Erlang]

	link:#chain-replication[Chain Replication for High Availability and Strong Consistency]

	link:#scalability[Easy, Affordable Scalability]

	link:#high-performance[High Performance, Especially for Reads and Large Values]

	link:#simple-powerful-api[Simple But Powerful Client API]

	link:#production-proven[Production-Proven]

	link:#hibari-benefits-by-user[Hibari Benefits for Developers, System Administrators, and Businesses]

[[engineered-erlang]]

Engineered in Erlang

Erlang is a general purpose programming language and runtime
environment designed specifically to support reliable,
high-performance distributed systems. Originally developed by Ericsson
in the 1980s for building advanced telecom networking systems,
Erlang/OTP (Open Telecom Platform) was open-sourced in 1998. Hibari is
written entirely in Erlang.

Erlang provides a range of benefits that make it the ideal foundation
for a distributed key-value storage solution:

	Concurrency. Erlang has extremely lightweight processes that
communicate by message passing and have no shared memory.
Scheduling, memory management, and other concurrency-related
services are managed by the Erlang VM, placing no requirements for
concurrency on the host operating system.

	Distribution. Erlang is designed specifically for distributed
environments. Passing messages transparently via TCP, Erlang
processes on different nodes communicate with each other in exactly
the same way as do processes on the same node. The simple and
efficient design facilitates massive parallelism and scalability of
the sort required by a high-performance distributed storage
system. With its prowess for concurrency and distributed
processing, it has been suggested that Erlang can be regarded as a
first-of-its-kind
http://www.oreillygmt.eu/open-sourcefree-software/erlang-the-ceos-view/[“application
system”], analogous to an operating system except running across
and coordinating multiple hosts.

	Robustness. Erlang processes are completely independent of each
other, with no data sharing. While functionally isolated, Erlang
processes are able to monitor each other and to detect and respond
to crashed processes, even on remote nodes.

	Portability. The same Erlang VM can run on Linux, Unix, Windows,
Macintosh, or VxWorks. Distributed Erlang processes can seamlessly
communicate with each other regardless of the heterogeneity of
their host operating systems. This OS portability is a valuable
facilitator of storage system elasticity, as system managers may
need to mix and match hosts in response to fluid demand
environments.

	Hot code upgrades. Erlang-based applications like Hibari support
hot code upgrades: upgrades can be applied without shutting down
the system. During the change-over, old and new code can run
simultaneously. This is a key benefit for environments that require
“always-on” availability for end users.

Other features reinforce Erlang’s suitability for reliable distributed
applications, including incremental garbage collection,
single-assignment variables, and robust exception handling.

[[chain-replication]]

Chain Replication for High Availability and Strong Consistency

The Hibari distributed key-value store implements a version of the
chain replication methodology first proposed by
http://www.usenix.org/event/osdi04/tech/full_papers/renesse/renesse.pdf[van
Renesse and Schneider] to achieve redundancy and high availability
without sacrificing data consistency. At a high level, chain
replication in a Hibari storage cluster works as follows:

	Through consistent hashing, the key space is divided across multiple
storage “chains”.

	Each chain is composed of multiple logical storage “bricks”, with
each brick running in its own Erlang VM instance.

	Within each chain, the member bricks have differentiated
roles. Client-requested updates to key-value pairs are written first
to the “head” brick, then automatically replicated downstream to one
or more “middle” bricks and finally to the “tail” brick, which
returns an update acknowledgement to the client. By contrast, read
requests are directed to the tail brick, which returns the response
to the client.

image:images/chain_replication.png[]

While most distributed storage systems are able to guarantee only weak
or eventual data consistency across replicas – placing the burden on
the client application (and the client application developer) to
manage the potential inconsistencies – Hibari with its chain
replication implementation guarantees strong consistency. Data updates
are considered complete, and are acknowledged to clients, only when
they have replicated through the chain to the tail; and read requests
are processed only by the tail. Consequently, after an object update
is acknowledged to a Hibari client, other clients are guaranteed to
see only the newest version of that object. This strong consistency is
valuable in environments where ‘eventual consistency’ is at odds with
the service level expected by end users, or where system designers do
not want to clutter client applications with the logic required to
manage data inconsistency.

The “length” of a chain is configurable and can be based on your
desired degree of replication and redundancy. For example, a chain of
length four would have a head brick, two middle bricks, and a tail
brick; while a three-brick chain would have a head, one middle, and a
tail. A chain can also operate at length two (a head and tail, with no
middle) and even at length one (one brick playing both the head role
and the tail role).

Because chains can operate at any length, and because the system is
able to detect failures within the chain and to adjust member brick
roles accordingly, Hibari delivers high availability as well as strong
data consistency. For example, if in a three-brick chain the head
brick goes down, the middle brick automatically takes over the head
brick role, allowing the chain to continue functioning normally:

image:images/automatic_failover.png[]

If the new head brick failed also, the lone remaining brick would then
play both the head role and the tail role, processing all writes and
reads itself as a single-brick “chain”.

While multiple logical bricks can run on a single physical node, for
high availability it is of course desirable that a particular chain’s
member bricks be deployed on separate machines. If you want to run
multiple bricks per machine and also ensure high availability for each
chain, an attractive deployment option is to “stripe” the chains
across machines:

image:images/load_balanced_chains.png[]

Note also that because head bricks (receiving incoming write requests)
and tail bricks (replying to write requests and processing read
requests) bear more load than do middle bricks, load balancing across
machines can be achieved in part by allocating the different brick
roles evenly, as in the diagram above.

In the event of a physical node failure, bricks within each impacted
chain automatically shift roles, and each chain continues to provide
normal service to clients:

image:images/automatic_failover_2.png[]

For further information about chain replication, fail-over, and
recovery in a Hibari storage system, and for information about
Hibari’s redundantly structured cluster membership application called
the Admin Server, see these sections of the Hibari System
Administrator’s Guide:

	link:hibari-sysadmin-guide.en.html#hibari-architecture[Hibari Architecture]

	link:hibari-sysadmin-guide.en.html#life-of-brick[The Life of a (Logical) Brick]

	link:hibari-sysadmin-guide.en.html#dynamic-cluster-reconfiguration[Dynamic Cluster Reconfiguration]

	link:hibari-sysadmin-guide.en.html#admin-server-app[The Admin Server Application]

[[scalability]]

Easy, Affordable Scalability

Hibari provides Big Data scalability while minimizing the cost and
operational complexity of cluster growth:

	Hibari scales horizontally by the addition of more chains, deployed
on more physical nodes. The total storage and processing capacity of
a Hibari cluster increases linearly as machines are added to the
cluster.

	The system rebalances data storage distribution automatically as
chains are added to (or removed from) the cluster, with no
downtime. You can grow (or shrink) your Hibari storage cluster with
no service interruption.

	Hibari runs on commodity PCs. Further, the system easily
accommodates heterogeneous hardware resources. Bricks within the
storage cluster can have different RAM and disk sizes, and different
CPU speeds. You can tune Hibari’s consistent hash function to
optimize your cluster’s utilization of mixed hardware. Each chain
can be assigned a weighting factor that will increase or decrease
that chain’s portion of the overall key space, relative to other
chains.

In addition to supporting mixed hardware, Erlang-based Hibari can run
on most any OS. With its easy adaptability to disparate hardware and
operating systems, you can scale Hibari incrementally, with whatever
resources you have available. It’s not necessary to buy all your
resources at once, or all of the same kind.

Note

The outer limits of Hibari’s horizontal scalability have not been
definitely determined, but 200 to 250 nodes is a practical boundary
due to the limitations of Erlang’s built-in network distribution
implementation. Also, while Hibari chains could theoretically be
stretched across multiple data centers to provide geographic
redundancy, to date only single data center deployments have been
tested and used in production.

For further information on resizing a Hibari cluster, see
link:hibari-sysadmin-guide.en.html#dynamic-cluster-reconfiguration[Dynamic
Cluster Reconfiguration] in the Hibari System Administrator’s Guide.

[[high-performance]]

High Performance, Especially for Reads and Large Values

Several features work in combination to drive high performance in a
Hibari storage cluster, even at Big Data scale:

	The Erlang technology that underlies Hibari was specifically
designed for and excels at distributed parallel processing.

	Hibari’s implementation of consistent hashing and chain replication
partitions the key-space across multiple chains, enabling parallel
simultaneous processing of requests incoming to individual
chains. The distribution of data across chains is tunable to allow
optimal utilization of heterogeneous hardware resources.

	Hibari’s chain replication implementation further aids performance
by assigning storage bricks differentiated processing roles as head,
middle, or tail. This division of labor particularly benefits read
performance, as read requests are processed by “tail” bricks that do
not bear the load of initial processing of write requests (since
that work is done by “head” bricks).

	Hibari supports a number of performance-tuning options on a
per-table basis. For example, while some distributed KVDBs support
only disk-based storage or only RAM-based storage of value blobs,
Hibari lets you choose RAM+disk-based or disk-only storage on a
per-table basis, depending on your application needs. Whichever
storage option you choose, all data changes are logged to disk to
ensure data durability in the event of power failures. A batch
commit technique is used to minimize disk I/O.

Leveraging this feature set, Hibari is able to deliver scalable high
performance that is competitive with leading open source NOSQL storage
systems, while also providing the data durability and strong
consistency that many systems lack. Hibari’s performance relative to
other NOSQL systems is particularly strong for reads and for large
value (> 200KB) operations. Hibari’s consistently high performance
even for large values distinguishes the system from solutions that are
tailored toward small value operations.

As one example of real-world performance, in a multi-million user
webmail deployment equipped with traditional HDDs (non SSDs), Hibari
is processing about 2,200 transactions per second, with read latencies
averaging between 1 and 20 milliseconds and write latencies averaging
between 20 and 80 milliseconds.

[[simple-powerful-api]]

Simple But Powerful Client API

As a key-value store, Hibari’s core data model and client API model
are simple by design: blob-based key-value pairs can be inserted,
retrieved, and deleted from lexicographically sorted tables. While
Hibari thus provides the flexibility and scalability associated with
key-value stores, the system also provides distinctive features that
enhance the power of client applications and developers:

	Clients can optionally assign per-object expiration times.

	Clients can optionally assign per-object custom flags. This
flexible, custom meta-data can be updated with or without updating
the associated value blob, and can be retrieved with or without the
value blob.

	Objects are automatically timestamped each time they are
updated. This timestamping mechanism facilitates “test-and-set” type
operations: clients can specify that a requested operation be
performed only if the target key’s timestamp matches the client’s
expectations.

	Within key-prefix range limits (specifically, within individual
chains but not across chains), Hibari’s client API supports atomic
transactions. This support for “micro-transactions” sets Hibari
apart from other open source KVDBs and can greatly simplify the
creation of robust client applications.

Hibari supports multiple client API implementations including:

	Native Erlang

	Universal Binary Format (UBF)

	Thrift

	Amazon S3

	JSON-RPC

You can develop Hibari client applications in a variety of languages
including Java, C/C++, Python, Ruby, and Erlang.

For further information about Hibari’s client API, see
link:#client-api-erlang[Client API: Native Erlang] and the subsequent
client API chapters in this guide.

Note

The Hibari source distribution does not include Amazon S3 and
JSON-RPC. They are separate external projects.

[[production-proven]]

Production-Proven

While initial development work on Hibari was geared generally toward
the data storage demands of the Tier 1 telecom sector, as the system
evolved it needed to meet the requirements of a particular major Asian
carrier that wished to launch a GB webmail service. This customer’s
requirements for Hibari included the following:

	Several million users from the start.

	Several billion stored messages within a few months of launch.

	Hundreds of TB storage capacity.

	Elasticity to support continual growth.

	Low system costs, particularly since the service would employ the
“freemium” model.

	Individual messages could range in size from a few bytes to many MB
with attachments.

	Support for per-object meta-data required.

	Strong consistency required, for interactive sessions.

	Data durability required – loss of messages or meta-data unacceptable.

	High availability – an “always on”, branded service.

	Low latency, with < 1 second response times for end user transactions.

Hibari was built to meet these rigorous requirements, was hardened
through extensive testing and trials, and went live in support of this
large-scale webmail system at the beginning of 2010. The system now
stores billions of messages on behalf of millions of end users, while
meeting customer requirements for availability, latency, consistency,
durability, and affordability.

Coinciding with Hibari’s development and fine tuning for this GB
webmail service, the system was also deployed as a storage solution
for two major Asian carriers’ mobile social networking services. In
this context, Hibari stores user profile data as well as digital goods
of varying types and sizes.

[[hibari-benefits-by-user]]

Hibari Benefits for Developers, System Administrators, and Businesses

For application developers, Hibari offers a distinctive set of
benefits not often found in distributed key-value stores:

	Strong data consistency guarantees that relieve client applications
of the burden of managing potential inconsistencies.

	Micro-transaction support that simplifies the creation of powerful
applications.

	Per-object custom flags that facilitate flexible, service-specific
application design.

	Support for a variety of API implementations and development
languages.

For system administrators, Hibari provides valuable operational
automations that simplify data management in a dynamic storage
environment:

	Automatic data replication.

	Automatic failover when a node goes down.

	Automatic repair when a failed node comes back up.

	Automatic rebalancing of data as a cluster grows or shrinks.

For businesses as a whole, Hibari offers affordable Big Data
scalability while delivering the high availability and low latencies
that service users demand. Hibari is an appropriate storage solution
for a range of data-intensive service scenarios including but not
limited to large-scale messaging, social media, and archiving. Hibari
offers particular value in environments that require strong data
consistency and/or high performance across a variety of object types
and sizes.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Getting Started

This section covers the following topics to help you get up and
running with Hibari:

	link:#system-requirements[System Requirements]

	link:#required-software[Required Third Party Software]

	link:#download-hibari[Downloading Hibari]

	link:#installing-single-node[Installing a Single-Node Hibari System]

	link:#starting-single-node[Starting and Stopping a Single-Node Hibari System]

	link:#installing-multi-node[Installing a Multi-Node Hibari Cluster]

	link:#starting-multi-node[Starting and Stopping a Multi-Node Hibari Cluster]

	link:#creating-tables[Creating New Tables]

[[system-requirements]]

System Requirements

Hibari will run on any OS that the Erlang VM supports, which includes
most Unix and Unix-like systems, Windows, and Mac OS X. See
Implementation and Ports of Erlang [http://www.erlang.org/faq/implementations.htm]
from the official Erlang documentation for further
information.

For guidance on hardware requirements in a production environment, see
link:hibari-sysadmin-guide.en.html#brick-hardware[Notes on Brick
Hardware] in the Hibari System Administrator’s Guide.

[[required-software]]

Required Third-Party Software

Hibari’s requirements for third party software depend on whether
you’re doing a single-node installation or a multi-node installation.

Required Software for a Single-Node Installation:

The node on which you plan to install Hibari must have the following software:

	OpenSSL - http://www.openssl.org/
	Required for Erlang’s “crypto” module

Required Software for a Multi-Node Installation:

When you install Hibari on multiple nodes you will use an installer
tool that simplifies the cluster set-up process. When you use this
tool you will identify the hosts on which you want Hibari to be
installed, and the tool will manage the installation of Hibari onto
those target hosts. You can run the tool itself from one of your
target Hibari nodes or from a different machine. There are distinct
requirements for third party software on the “installer node” (the
machine from which you run the installer tool) and on the Hibari nodes
(the machines on which Hibari will be installed and run.)

Installer Node Required Software

The installer node must have the software listed below. If you are
missing any of these items, you can use the provided links for
downloads and installation instructions.

	Bash - http://www.gnu.org/software/bash/

	Expect - http://www.nist.gov/el/msid/expect.cfm

	Perl - http://www.perl.org/

	SSH (client) - http://www.openssh.com/

	Git - http://git-scm.com/

	Must be version 1.5.4 or newer

	If you haven’t yet done so, please configure your email address
and name for Git:

$ git config --global user.email "you@example.com"
$ git config --global user.name "Your Name"

	If you haven’t yet done so, you must sign up for a GitHub account -
https://github.com/

There are currently no known version requirements for Bash, Expect,
Perl, or SSH.

Hibari Nodes Required Software

The nodes on which you plan to install Hibari must have the software
listed below.

	SSH (server) - http://www.openssh.com/

	OpenSSL - http://www.openssl.org/
	Required for Erlang’s “crypto” module

[[download-hibari]]

Downloading Hibari

Hibari is not yet available as a pre-built release. In the meanwhile,
you can build Hibari from source. Follow the instructions in
<<HibariBuildingSource>>, and then return to this section to continue
the set-up process.

When you build Hibari your output is two files that you will later use
in the set-up process:

	A tarball package hibari-X.Y.Z-DIST-ARCH-WORDSIZE.tgz

	An md5sum file hibari-X.Y.Z-DIST-ARCH-WORDSIZE-md5sum.txt

X.Y.Z is the release version, DIST is the release distribution,
ARCH is the release architecture, and WORDSIZE is the release
wordsize.

[[installing-single-node]]

Installing a Single-Node Hibari System

A single-node Hibari system will not provide data replication and
redundancy in the way that a multi-node Hibari cluster will. However,
you may wish to deploy a simple single-node Hibari system for testing
and development purposes.

	Create a directory for running Hibari:

$ mkdir running-directory

	Untar the Hibari tarball package that you created when you built
Hibari from source:

$ tar -C running-directory -xvf hibari-X.Y.Z-DIST-ARCH-WORDSIZE.tgz

Important

On your Hibari node, in the system’s /etc/sysctl.conf file,
set vm.swappiness=1. Swappiness is not desirable for an Erlang VM.

[[starting-single-node]]

Starting and Stopping Hibari on a Single Node

Starting and Bootstrapping Hibari

	Start Hibari:

$ running-directory/hibari/bin/hibari start

	If this is the first time you’ve started Hibari, bootstrap the system:

$ running-directory/hibari/bin/hibari-admin bootstrap

The Hibari bootstrap process starts Hibari’s Admin Server on the
single node and creates a single table “tab1” serving as Hibari’s
default table. For information on creating additional tables, see
link:#creating-tables[Creating New Tables].

Verifying Hibari

Do these quick checks to verify that your single-node Hibari system is
up and running.

	Confirm that you can open the “Hibari Web Administration” page:

$ your-favorite-browser http://127.0.0.1:23080

	Confirm that you can successfully ping the Hibari node:

$ running-directory/hibari/bin/hibari ping

IMPORTANT: A single-node Hibari system is hard-coded to listen on the
localhost address 127.0.0.1. Consequently the Hibari node is reachable
only from the node itself.

Stopping Hibari

To stop Hibari:

$ running-directory/hibari/bin/hibari stop

[[installing-multi-node]]

Installing a Multi-Node Hibari Cluster

Before you install Hibari on to the target nodes you must complete
these preparation steps:

	Set up required user privileges on the installer node and on the
target Hibari nodes.

	Download the Cluster installer tool.

	Configure the Cluster installer tool.

Setting Up Your User Privileges

The system user ID that you use to perform the installation must be
different than the Hibari runtime user. Your installing user account
($USER) must be set up as follows:

	$USER must exist on the installer node and also on the target Hibari
nodes.

	$USER on the installer node must have SSH private/public keys, with
the SSH agent set up to enable password-less SSH login.

	$USER account must be accessible with password-less SSH login on the
target Hibari nodes.

	$USER must have password-less sudo access on the target Hibari
nodes.

If your installing user account does not currently have the above
privileges, follow these steps:

	As the root user, add your installing user ($USER) to the installer
node. Then on each of the Hibari nodes, add your installing user and
grant your user password-less sudo access:

$ useradd $USER
$ passwd $USER
$ visudo
append the following line and save it
$USER ALL=(ALL) NOPASSWD: ALL

Note

If you get a “sudo: sorry, you must have a tty to run sudo” error
while testing sudo, try commenting out following line inside of the
/etc/sudoers file:

$ visudo
Defaults requiretty

	On the installer node, create a new SSH private/public key for your
installing user:

$ ssh-keygen
enter your password for the private key
$ eval `ssh-agent`
$ ssh-add ~/.ssh/id_rsa
re-enter your password for the private key

	On each of the Hibari nodes:

	Append an entry for the installer node to the ~/.ssh/known_hosts
file.

	Append an entry for your public SSH key to the
~/.ssh/authorized_keys file.

In the example below, the target Hibari nodes are dev1, dev2, and
dev3:

$ ssh-copy-id -i ~/.ssh/id_rsa.pub $USER@dev1
$ ssh-copy-id -i ~/.ssh/id_rsa.pub $USER@dev2
$ ssh-copy-id -i ~/.ssh/id_rsa.pub $USER@dev3

Note

If your installer node will be one of the Hibari cluster nodes,
make sure that you ssh-copy-id to the installer node also.

	Confirm that password-less SSH access to the each of the Hibari
nodes works as expected:

$ ssh $USER@dev1
$ ssh $USER@dev2
$ ssh $USER@dev3

Tip

If you need more help with SSH set-up, check
http://inside.mines.edu/~gmurray/HowTo/sshNotes.html.

[[download-cluster]]

Downloading the Cluster Installer Tool

“Cluster” is a simple tool for installing, configuring, and
bootstrapping a cluster of Hibari nodes. The tool is not part of the
Hibari package itself, but is available from GitHub.

Note

The Cluster tool should meet the needs of most users. However,
this tool’s “target node” recipe is currently Linux-centric
(e.g. useradd, userdel, ...). Patches and contributions for other OS
and platforms are welcome. For non-Linux deployments, the Cluster
tool is rather simple so installation can be done manually by
following the tool’s recipe.

	Create a working directory into which you will download the Cluster
installer tool:

$ mkdir working-directory

	Download the Cluster tool’s Git repository from GitHub:

$ cd working-directory
$ git clone git://github.com/hibari/clus.git

The download creates a sub-directory clus under which the installer
tool and various supporting files are stored.

[[config-cluster]]

Configuring the Cluster Installer Tool

The Cluster tool requires some basic configuration information that
indicates how you want your Hibari cluster to be set up. You will
create a simple text file that specifies your desired configuration,
and then later use the file as input when you run the Cluster tool.

It’s simplest to create the file in the same working directory in
which you downloaded the cluster tool. You can give the file any name
that you want; for purposes of these instructions we will use the file
name hibari.config.

Below is a sample hibari.config file. The file that you create must
include all of these parameters, and the values must be formatted in
the same way as in this example (with parentheses and quotation marks
as shown). Parameter descriptions follow the example file.

ADMIN_NODES=(dev1 dev2 dev3)
BRICK_NODES=(dev1 dev2 dev3)
BRICKS_PER_CHAIN=2

ALL_NODES=(dev1 dev2 dev3)
ALL_NETA_ADDRS=("10.181.165.230" "10.181.165.231" "10.181.165.232")
ALL_NETB_ADDRS=("10.181.165.230" "10.181.165.231" "10.181.165.232")
ALL_NETA_BCAST="10.181.165.255"
ALL_NETB_BCAST="10.181.165.255"
ALL_NETA_TIEBREAKER="10.181.165.1"

ALL_HEART_UDP_PORT="63099"
ALL_HEART_XMIT_UDP_PORT="63100"

[[eligible-admin-nodes]]

	ADMIN_NODES
	Host names of the nodes that will be eligible to run the Hibari
Admin Server. For complete information on the Admin Server, see
link:hibari-sysadmin-guide.en.html#admin-server-app[The Admin
Server Application] in the Hibari System Administrator’s Guide.

	BRICK_NODES
	Host names of the nodes that will serve as Hibari storage
bricks. Note that in the sample configuration file above there are
three storage brick nodes (dev1, dev2, and dev3), and these three
nodes are each eligible to run the Admin Server.

	BRICKS_PER_CHAIN
	Number of bricks per replication chain. For example, with two
bricks per chain there will be two copies of the data stored in
the chain (one copy on each brick); with three bricks per chain
there will be three copies, and so on. For an overview of chain
replication, see link:#chain-replication[Chain Replication for
High Availability and Strong Consistency] in this document. For
chain replication detail, see the Hibari System Administrator’s
Guide.

	ALL_NODES
	This list of all Hibari nodes is the union of ADMIN_NODES and
BRICK_NODES.

	ALL_NETA_ADDRS
	As described in
link:hibari-sysadmin-guide.en.html#partition-detector[The
Partition Detector Application] in the Hibari System
Administrator’s guide, the nodes in a multi-node Hibari cluster
should be connected by two networks, Network A and Network B, in
order to detect and manage network partitions. The
ALL_NETA_ADDRS parameter specifies the IP addresses of each
Hibari node within Network A, which is the network through which
data replication and other Erlang communications will take
place. The list of the IP addresses should correspond in order to
host names you listed in the ALL_NODES setting.

	ALL_NETB_ADDRS
	IP addresses of each Hibari node within Network B. Network B is
used only for heartbeat broadcasts that help to detect network
partitions. The list of the IP addresses should correspond in
order to host names you listed in the ALL_NODES setting.

	ALL_NETA_BCAST
	IP broadcast address for Network A.

	ALL_NETB_BCAST
	IP broadcast address for Network B.

	ALL_NETA_TIEBREAKER
	Within Network A, the IP address for the network monitoring
application to use as a “tiebreaker” in the event of a
partition. If the network monitoring application on a Hibari node
determines that Network A is partitioned and Network B is not
partitioned, then if the Network A tiebreaker IP address responds
to a ping, then the local node is on the “correct” side of the
partition. Ideally the tiebreaker should be the address of the
Layer 2 switch or Layer 3 router that all Erlang network
distribution communications flow through.

	ALL_HEART_UDP_PORT
	UDP port for heartbeat listener.

	ALL_HEART_XMIT_UDP_PORT
	UDP port for heartbeat transmitter.

For more detail on network monitoring configuration settings, see the
partition-detector’s OTP application source file
(https://github.com/hibari/partition-detector/raw/master/src/partition_detector.app.src).

CAUTION: In a production setting, Network A and Network B should be
physically different networks and network interfaces. However, for
testing and development purposes the same physical network can be used
for Network A and Network B (as in the sample configuration file
above).

As final configuration steps, on each Hibari node:

	Make sure that the /etc/hosts file has entries for all Hibari nodes
in the cluster. For example:

10.181.165.230 dev1.your-domain.com dev1
10.181.165.231 dev2.your-domain.com dev2
10.181.165.232 dev3.your-domain.com dev3

	In the system’s /etc/sysctl.conf file, set vm.swappiness=1. Swappiness
is not desirable for an Erlang VM.

Installing Hibari

From your installer node, logged in as the installer user, take these
steps to create your Hibari cluster:

	In the working directory in which you
link:#download-cluster[downloaded the Cluster tool] and
link:#config-cluster[created your cluster configuration file], place
a copy of the Hibari tarball package and md5sum file:

$ cd working-directory
$ ls -1
clus
hibari-X.Y.Z-DIST-ARCH-WORDSIZE-md5sum.txt
hibari-X.Y.Z-DIST-ARCH-WORDSIZE.tgz
hibari.config
$

	Create the “hibari” user on all Hibari nodes:

$ for i in dev1 dev2 dev3 ; do ./clus/priv/clus.sh -f init hibari $i ; done
hibari@dev1
hibari@dev2
hibari@dev3

Note

If the “hibari” user already exists on the target nodes, the -f
option will forcefully delete and then re-create the “hibari” user.

	Install the Hibari package on all Hibari nodes, via the newly
created “hibari” user:

$./clus/priv/clus-hibari.sh -f init hibari hibari.config hibari-X.Y.Z-DIST-ARCH-WORDSIZE.tgz
hibari@dev1
hibari@dev2
hibari@dev3

Note

By default the Cluster tool installs Hibari into
/usr/local/var/lib on the target nodes. If you prefer a different
location, before doing the install open the clus.sh script (in your
working directory, under /clus/priv/) and edit the CT_HOMEBASEDIR
variable.

[[starting-multi-node]]

Starting and Stopping a Multi-Node Hibari Cluster

You can use the Cluster installer tool to start and stop your
multi-node Hibari cluster, working from the same node from which you
managed the installation process. Note that in each of the Hibari
commands in this section you’ll be referencing the name of the
link:#config-cluster[Cluster tool configuration file] that you created
during the installation procedure.

Starting and Bootstrapping the Hibari Cluster

	Change to the working directory in which you downloaded the Cluster
tool, then start Hibari on all Hibari nodes via the “hibari” user:

$ cd working-directory
$./clus/priv/clus-hibari.sh -f start hibari hibari.config
hibari@dev1
hibari@dev2
hibari@dev3

	If this is the first time you’ve started Hibari, bootstrap the
system via the “hibari” user:

$./clus/priv/clus-hibari.sh -f bootstrap hibari hibari.config
hibari@dev1 => hibari@dev1 hibari@dev2 hibari@dev3

The Hibari bootstrap process starts Hibari’s Admin Server on the first
link:#eligible-admin-nodes[eligible admin node] and creates a single
table “tab1” serving as Hibari’s default table. For information about
creating additional tables, see link:#creating-tables[Creating New Tables].

Note

If bootstrapping fails due to “another_admin_server_running”
error, please stop the other Hibari cluster(s) running on the network;
or reconfigure the Cluster tool to assign
link:#eligible-admin-nodes[Hibari heartbeat listener ports] that are
not in use by another Hibari cluster or other applications and then
repeat the cluster installation procedure.

Verifying the Hibari Cluster

Do these simple checks to verify that Hibari is up and running.

	Confirm that you can open the “Hibari Web Administration” page:

$ your-favorite-browser http://dev1:23080

	Confirm that you can successfully ping each of your Hibari nodes:

$./clus/priv/clus-hibari.sh -f ping hibari hibari.config
hibari@dev1 ... pong
hibari@dev2 ... pong
hibari@dev3 ... pong

Stopping the Hibari Cluster

Stop Hibari on all Hibari nodes via the “hibari” user:

$ cd working-directory
$./clus/priv/clus-hibari.sh -f stop hibari hibari.config
ok
ok
ok
hibari@dev1
hibari@dev2
hibari@dev3

[[creating-tables]]

Creating New Tables

The simplest way to create a new table is via the Admin Server’s
GUI. Open http://localhost:23080/ and click the “Add a table” link.
In addition to the GUI, the hibari-admin tool can also be used to
create a new table. See the hibari-admin tool for usage details.

Note

For information about creating tables using the administrative
API, see the Hibari System Administrator’s Guide.

When adding a table through the GUI, you have these table
configuration options:

	Local
	Boolean. If true, all bricks for storing the new table’s data will
be created on the local node, i.e. the node that’s running the
Admin Server. If false, then the “NodeList” field is used to
specify which cluster nodes the new bricks should use.

	BigData
	Boolean. If true, value blobs will be stored on disk.

	DiskLogging
	Boolean. If true, all updates will be written to the write-ahead
log for persistence. If false, bricks will run faster but at the
expense of data loss in a cluster-wide power failure.

	SyncWrites
	Boolean. If true, all writes to the write-ahead log will be
flushed to stable storage via the fsync(2) system call. If
false, bricks will run faster but at the expense of data loss in a
cluster-wide power failure.

	VarPrefix
	Boolean. If true, then a variable-length prefix of the key will be
used as input for the consistent hashing function. If false, the
entire key will be used.

Many applications can benefit from using a variable-length or
fixed-length prefix hashing scheme. As an example, consider an
application that maintains state for various users. The app wishes to
use micro-transactions to update various keys (in the same table)
related to that user. The table can be created to use
VarPrefix=true, together with VarPrefixSeparator=47 (ASCII 47 is
the forward slash character) and VarPrefixNumSeparator=2, to create
a hashing scheme that will guarantee that keys /FooUser/summary and
/FooUser/thing1 and /FooUser/thing9 are all stored by the same
chain.

Note

The HTTP interface for creating tables does not expose the
fixed-length key prefix scheme. The Erlang API must be used in this
case.

	VarPrefixSeparator
	Integer. Define the character used for variable-length key prefix
calculation. Note that the default value of ASCII 47 (the “/”
character), or any other character, does not imply any UNIX/POSIX
style file or directory semantics.

	VarPrefixNumSeparators
	Integer. Define the number of VarPrefixSeparator bytes, and all
bytes in between, used for consistent hashing. If
VarPrefixSeparator=47 and VarPrefixNumSeparators=3, then for a
key such as /foo/bar/baz, the prefix used for consistent hashing
will be /foo/bar/.

	Bricks
	Integer. If Local=true (see above), then this integer defines
the total number of logical bricks that will be created on the
local node. This value is ignored if Local=false.

	BPC
	Integer. Define the number of bricks per chain.

The algorithm used for creating chain -> brick mapping is based on a
“striping” principle: enough chains are laid across bricks in a
stripe-wise manner so that all nodes (aka physical bricks) will have
the same number of logical bricks in head, middle, and tail roles.
See the example in the Hibari System Administrator’s Guide of
link:hibari-sysadmin-guide.en.html#3-chains-striped-across-3-bricks[3
chains striped across three nodes].

The Erlang API must be used to create tables with other chain layout
patterns.

	NodeList
	Comma-separated string. If Local=false, specify the list of
nodes that will run logical bricks for the new table. Each node
in the comma-separated list should take the form
NodeName@HostName. For example, use hibari1@machine-a,
hibari1@machine-b, hibari1@machine-c to specify three nodes.

	NumNodesPerBlock
	Integer. If Local=false, then this integer will affect the
striping behavior of the default chain striping algorithm. This
value must be zero (i.e. this parameter is ignored) or a multiple
of the BPC parameter.

For example, if NodeList contains nodes A, B, C, D, E, and F, then
the following striping patterns would be used:

	NumNodesPerBlock=0 would stripe across all 6 nodes for 6
chains total.

	NumNodesPerBlock=2 and BPC=2 would stripe 2 chains across
nodes A & B, 2 chains across C & D, and 2 chains across E & F.

	NumNodesPerBlock=3 and BPC=3 would stripe 3 chains across
nodes A & B & C and 3 chains across D & E & F.

	BlockMultFactor
	Integer. If Local=false, then this integer will affect the
striping behavior of the default chain striping algorithm. This
value must be zero (i.e. this parameter is ignored) or greater
than zero.

For example, if NodeList contains nodes A, B, C, D, E, and F, then
the following striping patterns would be used:

	NumNodesPerBlock=0 and BlockMultFactor=0 would stripe
across all 6 nodes for 6 chains total.

	NumNodesPerBlock=2 and BlockMultFactor=5 and BPC=2 would
stripe 2*5=10 chains across nodes A & B, 2*5=10 chains across C
& D, and 2*5=10 chains across E & F, for a total of 30 chains.

	NumNodesPerBlock=3 and BlockMultFactor=4 and BPC=3 would
stripe 3*4=12 chains across nodes A & B & C and 3*4=12 chains
across D & E & F, for a total of 24 chains.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

The Hibari Data Model

If a Hibari table were represented within an SQL database, it would
look something like this:

[[sql-definition-hibari]]

include::texts-src/hibari-sql-definition.txt[]

Hibari table names use the Erlang data type ``atom’‘. The types of
all key-related attributes are presented below.

include::texts-src/hibari-key-value-attrs.txt[]

include::texts-src/hibari-key-value-attrs-expl.txt[]

The practical constraints on maximum value blob size are affected by
total blob size and frequency of large blob access. For example,
storing an occasional 64MB value blob is different than a 100% write
workload of 100% 64MB value blobs. The Hibari client API does not
have a method to update or fetch less than the entire value blob, so a
brick can be blocked for many seconds if it tried to operate on (for
example) even a single 4GB blob. In addition, other processes can be
blocked by ‘busy_dist_port’ events while processing big value blobs.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hibari Client API Overview

As a key-value database, Hibari provides a simple client API with
primitive operations for inserting, retrieving, and deleting data.
Within certain restrictions, the API also supports compound operations
that optionally can be executed as atomic transactions.

Supported Operations

Hibari’s client API supports the operations listed below.

Data Insertion

	
brick_simple:add(Table, Key, Value[, ExpTime][, Flags][, Timeout])

	Adds a key-value pair that does not yet exist, along with optional
flags.

Successful adding of a new key-value pair:

> brick_simple:add(tab1, <<"foo">>, <<"Hello, world!">>).
{ok,1271542959131192}

Failed attempt to add a key that already exists:

> brick_simple:add(tab1, <<"foo">>, <<"Goodbye, world!">>).
{key_exists,1271542959131192}

	
brick_simple:replace(Table, Key, Value[, ExpTime][, Flags][, Timeout])

	Assigns a new value and/or new flags to a key that already exists.

	
brick_simple:set(Table, Key, Value[, ExpTime][, Flags][, Timeout])

	Sets a key-value pair and optional flags regardless of whether the
key yet exists.

	
brick_simple:rename(Table, Key, NewKey[, ExpTime][, Flags][, Timeout])

	Renames a key that already exists.

Successful renaming of a key-value pair:

> brick_simple:rename(tab1, <<"my/foo">>, <<"my/bar">>).
{ok,1271543165272987}

rename operation fails if key and newkey do not share a
common key prefix:

> brick_simple:rename(tab1, <<"my/foo">>, <<"her/foo">>).
...

See TODO (Creating New Table - VarPrefix) for more details.

Data Retrieval

	Retrieve a key and optionally its associated value and flags:
	link:#brick-simple-get[brick_simple:get/4]

	Retrieve multiple lexicographically contiguous keys and optionally
their associated values and flags:
	link:#brick-simple-get-many[brick_simple:get_many/5]

Data Deletion

	Delete a key-value pair and associated flags:
	link:#brick-simple-delete[brick_simple:delete/4]

Compound Operations

	Execute a specified list of operations, optionally as an atomic
transaction (micro-transaction):
	link:#brick-simple-do[brick_simple:do/4]

Fold Operations

	Implement a fold operation across all keys in a table:
	link:#brick-simple-fold-table[brick_simple:fold_table/7]

	Implement a fold operation across all keys having a specified
prefix:
	link:#brick-simple-fold-key[brick_simple:fold_key_prefix/9]

Note

Fold operations are performed at client side, not server side.

Check and Swap (CAS)

If desired, clients can apply a “check and swap” (or “test and set”)
logic to data insertion, retrieval, and deletion operations so that
the operation will be executed only if the target key has the exact
timestamp specified in the request.

Micro-Transaction

TODO

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Client API: Native Erlang

Data Insertion

	Add a key-value pair that does not yet exist, along with optional
flags:

	link:#brick-simple-add[brick_simple:add/6]

	Assign a new value and/or new flags to a key that already exists:

	link:#brick-simple-replace[brick_simple:replace/6]

	Rename a key that already exists:

	link:#brick-simple-rename[brick_simple:rename/6]

	Set a key-value pair and optional flags regardless of whether the
key yet exists:

	link:#brick-simple-set[brick_simple:set/6]

Data Retrieval

	Retrieve a key and optionally its associated value and flags:
	link:#brick-simple-get[brick_simple:get/4]

	Retrieve multiple lexicographically contiguous keys and optionally
their associated values and flags:
	link:#brick-simple-get-many[brick_simple:get_many/5]

Data Deletion

	Delete a key-value pair and associated flags:
	link:#brick-simple-delete[brick_simple:delete/4]

Compound Operations

	Execute a specified list of operations, optionally as an atomic
transaction (micro-transaction):
	link:#brick-simple-do[brick_simple:do/4]

If desired, clients can apply a “test ‘n set” logic to data insertion,
retrieval, and deletion operations so that the operation will be
executed only if the target key has the exact timestamp specified in
the request.

Fold Operations

	Implement a fold operation across all keys in a table:
	link:#brick-simple-fold-table[brick_simple:fold_table/7]

	Implement a fold operation across all keys having a specified
prefix:
	link:#brick-simple-fold-key[brick_simple:fold_key_prefix/9]

Note

Fold operations are performed at client side, not server side.

brick_simple:add/6

Adds Key and Value pair (and optional Flags) to the table
Table if the key does not already exist. The operation will fail
if Key already exists.

	
brick_simple:add(Table, Key, Value)

	

	
brick_simple:add(Table, Key, Value, Flags)

	

	
brick_simple:add(Table, Key, Value, Timeout)

	

	
brick_simple:add(Table, Key, Value, ExpTime, Flags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table to which to add the key-value pair

	-type table() :: atom()

	Key (key()) – Key to add to the table, in association with a paired value

	-type key() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

Note

While the Key may be specified as either iolist() or
binary(), it will be converted into binary before operation
execution. The same is true of Value.

	Parameters:	
	Value (val()) – Value to associate with the key

	-type val() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

	ExpTime (exp_time()) –
	Time at which the key will expire, expressed as a Unix
time_t().

	Optional; defaults to 0 (no expiration).

	-type exp_time() :: time_t()

	-type time_t() :: integer()

	Flags (flags_list()) –
	List of operational flags to apply to the add operation,
and/or custom property flags to associate with the key-value
pair in the database. Heavy use of custom property flags is
discouraged due to RAM-based storage

	Optional; defaults to empty list

	-type flags_list() :: [do_op_flag() | property()]

	-type do_op_flag() :: 'value_in_ram'
	Store the value blob in RAM, overriding the default storage
location of the brick
Note

'value_in_ram' flag have not been extensively tested

	-type property() :: atom() | {term(), term()}

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	{'ok', timestamp()}

Error returns

	Return type:	{'key_exists', timestamp()}
	The operation failed because the key already exists.

	-type timestamp() :: integer()

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_op_flag() was
found in the Flags argument.

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key is currently length zero and therefore unavailable.

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain.

	-type node() :: atom()

Examples

Successful adding of a new key-value pair:

> brick_simple:add(tab1, <<"foo">>, <<"Hello, world!">>).
{ok,1271542959131192}

Failed attempt to add a key that already exists:

> brick_simple:add(tab1, <<"foo">>, <<"Goodbye, world!">>).
{key_exists,1271542959131192}

Successful adding of a new key-value pair, with value to be stored in
RAM regardless of brick’s default storage setting:

> brick_simple:add(tab1, "foo1", "this is value1", ['value_in_ram']).
{ok,1271542959131192}

Successful adding of a new key-value pair, using a non-default
operation timeout:

> brick_simple:add(tab1, "foo2", "this is value2", 20000).
{ok,1271542959131192}

brick_simple:replace/6

Replace Key and Value pair (and optional Flags) in the
table Table if the key already exists. The operation will fail if
Key does not already exist

	
brick_simple:replace(Table, Key, Value)

	

	
brick_simple:replace(Table, Key, Value, Flags)

	

	
brick_simple:replace(Table, Key, Value, Timeout)

	

	
brick_simple:replace(Table, Key, Value, ExpTime, Flags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table in which to replace the key-value pair.

	-type table() :: atom()

	Key – Key to replace in the table, in association with a new paired
value

	-type key() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

Note

While the Key may be specified as either iolist() or
binary(), it will be converted into binary before operation
execution. The same is true of Value.

	Parameters:	
	Value (val()) – Value to associate with the key

	-type val() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

	ExpTime (exp_time()) –
	Time at which the key will expire, expressed as a Unix
time_t().

	Optional; defaults to 0 (no expiration).

	-type exp_time() :: time_t()

	-type time_t() :: integer()

	Flags (flags_list()) –
	List of operational flags to apply to the replace
operation, and/or custom property flags to associate with the
key-value pair in the database. Heavy use of custom property
flags is discouraged due to RAM-based storage

	Optional; defaults to empty list

	-type flags_list() :: [do_op_flag() | property()]

	-type do_op_flag() :: {'testset', timestamp()} | 'value_in_ram'
{'exp_time_directive', 'keep' | 'replace'} |
{'attrib_directive', 'keep' | 'replace'}

	-type timestamp() = integer()

	-type property() :: atom() | {term(), term()}

	Operational flag usage
	{'testset', timestamp()}
	Fail the operation if the existing key’s timestamp is not
exactly equal to timestamp(). If used inside a
link:#brick-simple-do[micro-transaction], abort the
transaction if the key’s timestamp is not exactly equal to
timestamp()

	{'exp_time_directive', 'keep' | 'replace'}
	Default to 'replace'

	Specifies whether the ExpTime is kept from the old key
value pair or replaced with the ExpTime provided in
the replace operation

	{'attrib_directive', 'keep' | 'replace'}
	Default to 'replace'

	Specifies whether the custom properties are kept from the
old key value pair or replaced with the custom properties
provided in the replace operation

	If kept, the custom properties remain unchanged. If you
specify custom properties explicitly in the replace
operation, Hibari adds them to the resulting key value
pair

	If replaced, all original custom properties are deleted,
and then Hibari adds the custom properties in the replace
operation to the resulting key value pair

	'value_in_ram'
	Store the value blob in RAM, overriding the default
storage location of the brick

Note

'value_in_ram' flag have not been extensively tested

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	{'ok', timestamp()}

Error returns

	Return type:	'key_not_exists'
	The operation failed because the key does not exist

	-type timestamp() :: integer()

	Return type:	{'ts_error', timestamp()}
	The operation failed because the {'testset', timestamp()}
flag was used and there was a timestamp mismatch. The
timestamp() in the return is the current value of the
existing key’s timestamp.

	timestamp() = integer()

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_op_flag() was
found in the Flags argument.

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key is currently length zero and therefore unavailable.

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain.

	-type node() :: atom()

Examples

Successful replacement of a key-value pair:

> brick_simple:replace(tab1, <<"foo">>, <<"Goodbye, world!">>).
{ok,1271543165272987}

Failed attempt to replace a key that does not yet exist:

> brick_simple:replace(tab1, <<"key3">>, <<"new and improved value">>).
key_not_exist

Successful replacement of a key-value pair, with value to be stored in
RAM regardless of brick’s default storage setting:

> brick_simple:replace(tab1, "foo", "You again, world!", ['value_in_ram']).
{ok,1271543165272987}

Failed attempt to replace a key for which we have incorrectly
specified its current timestamp:

> brick_simple:replace(tab1, "foo", "Whole new value", [{'testset', 12345}]).
{ts_error,1271543165272987}

Successful replacement of a key-value pair for which we have correctly
specified its current timestamp:

> brick_simple:replace(tab1, "foo", "Whole new value", [{'testset', 1271543165272987}]).
{ok,1271543165272988}

Successful replacement of a key-value pair, using a non-default
operation timeout:

> brick_simple:replace(tab1, "foo", "Foo again?", 30000).
{ok,1271543165272989}

brick_simple:set/6

Set Key and Value pair (and optional Flags) in the table
Table, regardless of whether or not the key already exists.

	
brick_simple:set(Table, Key, Value)

	

	
brick_simple:set(Table, Key, Value, Flags)

	

	
brick_simple:set(Table, Key, Value, Timeout)

	

	
brick_simple:set(Table, Key, Value, ExpTime, Flags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table to which to set the key-value pair

	-type table() :: atom()

	Key (key()) – Key to set in to the table, in association with a paired value

	-type key() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

Note

While the Key may be specified as either iolist() or
binary(), it will be converted into binary before operation
execution. The same is true of Value.

	Parameters:	
	Value – Value to associate with the key

	-type val() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

	ExpTime (exp_time()) –
	Time at which the key will expire, expressed as a Unix
time_t().

	Optional; defaults to 0 (no expiration).

	-type exp_time() :: time_t()

	-type time_t() :: integer()

	Flags (flags_list()) –
	List of operational flags to apply to the set operation,
and/or custom property flags to associate with the key-value
pair in the database. Heavy use of custom property flags is
discouraged due to RAM-based storage

	Optional; defaults to empty list

	-type flags_list() :: [do_op_flag() | property()]

	-type do_op_flag() :: {'testset', timestamp()} | 'value_in_ram'
| {'exp_time_directive', 'keep' | 'replace'}
| {'attrib_directive', 'keep' | 'replace'}

	-type timestamp() :: integer()

	-type property() :: atom() | {term(), term()}

	Operational flag usage
	{'testset', timestamp()}
	Fail the operation if the existing key’s timestamp is not
exactly equal to timestamp(). If used inside a
link:#brick-simple-do[micro-transaction], abort the
transaction if the key’s timestamp is not exactly equal to
timestamp(). Using this flag with set will result
in an error if the key does not already exist or if the
key exists but has a non-matching timestamp.

	{'exp_time_directive', 'keep' | 'replace'}
	Default to 'replace'

	Specifies whether the ExpTime is kept from the old key
value pair or replaced with the ExpTime provided in
the replace operation

	{'attrib_directive', 'keep' | 'replace'}
	Default to 'replace'

	Specifies whether the custom properties are kept from the
old key value pair or replaced with the custom properties
provided in the set operation

	If kept, the custom properties remain unchanged. If you
specify custom properties explicitly in the set
operation, Hibari adds them to the resulting key value
pair

	If replaced, all original custom properties are deleted,
and then Hibari adds the custom properties in the set
operation to the resulting key value pair

	'value_in_ram'
	Store the value blob in RAM, overriding the default
storage location of the brick

Note

'value_in_ram' flag have not been extensively tested

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	{'ok', timestamp()}

Error returns

	Return type:	'key_not_exists'
	The operation failed because the {'testset', timestamp()}
flag was used and key does not exist

	-type timestamp() :: integer()

	Return type:	{'ts_error', timestamp()}
	The operation failed because the {'testset', timestamp()}
flag was used and there was a timestamp mismatch. The
timestamp() in the return is the current value of the
existing key’s timestamp.

	timestamp() = integer()

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_op_flag() was
found in the Flags argument.

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key is currently length zero and therefore unavailable.

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain.

	-type node() :: atom()

Examples

Successful setting of a key-value pair:

> brick_simple:set(tab1, <<"key4">>, <<"cool value">>).
{ok,1271542959131192}

Successful setting of a key-value pair, with value to be stored in RAM
regardless of brick’s default storage setting:

> brick_simple:set(tab1, "goo", "value6", ['value_in_ram']).
{ok,1271542959131193}

Failed attempt to set a key-value pair, when we have used the
testset flag but the key does not yet exist:

> brick_simple:set(tab1, "boo", "hoo", [{'testset', 1271543165272987}]).
key_not_exist

Successful setting of a key-value pair, when we have used the
testset flag and the key does already exist and its timestamp
matches our specified timestamp:

> brick_simple:set(tab1, "goo", "value7", [{'testset', 1271543165272432}]).
{ok,1271543165272433}

brick_simple:rename/6

Rename Key, Value pair, and Flags to NewKey in the
table Table if the key already exists. The operation will fail if:

	Key does not already exist

	... or Key and NewKey do not share a common key prefix.
(See TODO (Creating New Table - VarPrefix) for more details)

	
brick_simple:rename(Table, Key, NewKey)

	

	
brick_simple:rename(Table, Key, NewKey, Flags)

	

	
brick_simple:rename(Table, Key, NewKey, Timeout)

	

	
brick_simple:rename(Table, Key, NewKey, ExpTime, Flags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table to which to rename the key-value pair

	-type table() :: atom()

	Key (key()) – Key to rename in to the table, in association with a paired value

	-type key() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

Note

While the Key may be specified as either iolist() or
binary(), it will be converted into binary before operation
execution. The same is true of NewKey

	Parameters:	
	NewKey – NewKey in the table, in association with an existing paired
value

	-type val() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

	ExpTime (exp_time()) –
	Time at which the key will expire, expressed as a Unix
time_t().

	Optional; defaults to 0 (no expiration).

	-type exp_time() :: time_t()

	-type time_t() :: integer()

	Flags (flags_list()) –
	List of operational flags to apply to the rename
operation, and/or custom property flags to associate with the
key-value pair in the database. Heavy use of custom property
flags is discouraged due to RAM-based storage

	Optional; defaults to empty list

	-type flags_list() :: [do_op_flag() | property()]

	-type do_op_flag() :: {'testset', timestamp()} | 'value_in_ram'
| {'exp_time_directive', 'keep' | 'replace'}
| {'attrib_directive', 'keep' | 'replace'}

	-type timestamp() :: integer()

	-type property() :: atom() | {term(), term()}

	Operational flag usage
	{'testset', timestamp()}
	Fail the operation if the existing key’s timestamp is not
exactly equal to timestamp(). If used inside a
link:#brick-simple-do[micro-transaction], abort the
transaction if the key’s timestamp is not exactly equal to
timestamp().

	{'exp_time_directive', 'keep' | 'replace'}
	Default to 'keep'

	Specifies whether the ExpTime is kept from the old key
value pair or replaced with the ExpTime provided in
the rename operation

	{'attrib_directive', 'keep' | 'replace'}
	Default to 'keep'

	Specifies whether the custom properties are kept from the
old key value pair or replaced with the custom properties
provided in the rename operation

	If kept, the custom properties remain unchanged. If you
specify custom properties explicitly in the rename
operation, Hibari adds them to the resulting key value
pair

	If replaced, all original custom properties are deleted,
and then Hibari adds the custom properties in the rename
operation to the resulting key value pair

	'value_in_ram'
	Store the value blob in RAM, overriding the default
storage location of the brick

Note

'value_in_ram' flag have not been extensively tested

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	{'ok', timestamp()}

Error returns

	Return type:	'key_not_exists'
	The operation failed because the key does not exist or because
key and the new key are equal

	-type timestamp() :: integer()

	Return type:	{'ts_error', timestamp()}
	The operation failed because the {'testset', timestamp()}
flag was used and there was a timestamp mismatch. The
timestamp() in the return is the current value of the
existing key’s timestamp.

	timestamp() = integer()

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_op_flag() was
found in the Flags argument.

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key and the new key is currently length zero and
therefore unavailable.

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain.

	-type node() :: atom()

Examples

Successful renaming of a key-value pair:

> brick_simple:rename(tab1, <<"foo">>, <<"bar">>).
{ok,1271543165272987}

Failed attempt to rename a key that does not yet exist:

> brick_simple:rename(tab1, <<"key3">>, <<"bar">>).
key_not_exist

Successful renaming of a key-value pair, with value to be stored in
RAM regardless of brick’s default storage setting:

> brick_simple:rename(tab1, "foo", "bar", ['value_in_ram']).
{ok,1271543165272987}

Failed attempt to rename a key for which we have incorrectly
specified its current timestamp:

> brick_simple:rename(tab1, "foo", "bar", [{'testset', 12345}]).
{ts_error,1271543165272987}

Successful renaming of a key-value pair for which we have correctly
specified its current timestamp:

> brick_simple:rename(tab1, "foo", "bar", [{'testset', 1271543165272987}]).
{ok,1271543165272988}

Successful renaming of a key-value pair, using a non-default
operation timeout:

> brick_simple:rename(tab1, "foo", "bar", 30000).
{ok,1271543165272989}

brick_simple:get/4

From table Table, retrieve Key and specified attributes of the
key (as determined by Flags).

	
brick_simple:get(Table, Key)

	

	
brick_simple:get(Table, Key, Flags)

	

	
brick_simple:get(Table, Key, Timeout)

	

	
brick_simple:get(Table, Key, Flags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table from which to retrieve the key-value pair

	-type table() :: atom()

	Key (key()) – Key to retrieve from to the table

	-type key() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

Note

While the Key may be specified as either iolist() or
binary(), it will be converted into binary before operation
execution

	Parameters:	
	Flags (flags_list()) –
	List of operational flags to apply to the get operation.

	Optional; defaults to empty list

	-type flags_list() :: [do_op_flag()]

	-type do_op_flag() :: 'get_all_attribs' | 'witness'
| {'testset', timestamp()}
| 'must_exist' | 'must_not_exist'

	-type timestamp() :: integer()

	Operational flag usage
	'get_all_attribs'
	Return all attributes of the key. May be used in
combination with the witness flag

	'witness'
	Do not return the value blob in the result. This flag will
guarantee that the brick does not require disk access to
satisfy this request

	{'testset', timestamp()}
	Fail the operation if the key’s timestamp is not exactly
equal to timestamp(). If used inside a
link:#brick-simple-do[micro-transaction], abort the
transaction if the key’s timestamp is not exactly equal to
timestamp().

	This flag has priority over the 'must_exist' and
'must_not_exist' flags

	'must_exist'
	For use inside a link:#brick-simple-do[micro-transaction]:
abort the transaction if the key does not exist

	'must_not_exist'
	For use inside a link:#brick-simple-do[micro-transaction]:
abort the transaction if the key exists. This flag may be
useful when the relationship between two or more keys is
important to the client application

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success returns

	Return type:	{'ok', timestamp(), val()}
	Success return when the get request uses neither the
'witness' flag nor the 'get_all_attribs' flag

	-type timestamp() :: integer()

	-type val() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

	Return type:	{'ok', timestamp()}
	Success return when the get uses 'witness' but not
'get_all_attribs'

	Return type:	{'ok', timestamp(), exp_time(), proplist()}
	Success return when the get uses both 'witness' and
'get_all_attribs'

	-type exp_time() :: time_t()

	-type proplist() :: [property()]

	-type property() :: atom() | {term(), term()}

	Return type:	{'ok', timestamp(), val(), exp_time(), proplist()}
	Success return when the get uses 'get_all_attribs' but not
'witness'

	-type exp_time() :: time_t()

Note

When a proplist() is returned, one of the properties in the
list will always be {val_len, Size::integer()}, where
Size is the size of the value blob in bytes

Error returns

	Return type:	'key_not_exist'
	The operation failed because the key does not exist.

	Return type:	{'ts_error', timestamp()}
	The operation failed because the {'testset', timestamp()}
flag was used and there was a timestamp mismatch. The
timestamp() in the return is the current value of the
existing key’s timestamp.

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_op_flag() was
found in the Flags argument

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key is currently length zero and therefore unavailable.

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain.

	-type node() :: atom()

Examples

Successful retrieval of a key-value pair:

> brick_simple:get(tab1, "goo").
{ok,1271543165272432,<<"value7">>}

Successful retrieval of a key without its associated value blob:

> brick_simple:get(tab1, "goo", ['witness']).
{ok,1271543165272432}

Failed attempt to retrieve a key that does not exist:

> brick_simple:get(tab1, "moo").
key_not_exist

brick_simple:get_many/5

Get many keys from a single chain in the table Table, up to a
maximum of MaxNum keys. Keys are returned in lexicographic sorting
order starting with the first key _after_ the key specified by the
Key argument. The return list includes a boolean value indicating
whether or not there are more keys after the last key of the return
results.

Important

A single get_many() function call cannot be used to retrieve
keys from across multiple storage chains. The consistent hash of
Key will send the get_many operation to the tail brick in a
single chain; all keys returned will come from that single brick
only.

	
brick_simple:get_many(Table, Key, MaxNum)

	

	
brick_simple:get_many(Table, Key, MaxNum, Flags)

	

	
brick_simple:get_many(Table, Key, MaxNum, Timeout)

	

	
brick_simple:get_many(Table, Key, MaxNum, Flags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table to which to retrieve the key-value pair

	-type table() :: atom()

	Key (key()) – Key after which to start the get_many retrieval, proceeding
in lexicographic order with the first key after the specified
Key

	-type key() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

Note

While the Key may be specified as either iolist() or
binary(), it will be converted into binary before operation
execution

	Parameters:	
	MaxNum (integer()) – Maximum number of keys to return

	Flags –
	List of operational flags to apply to the get_many
operation.

	Optional; defaults to empty list

	-type flags_list() :: [do_op_flag()]

	-type do_op_flag() :: 'get_all_attribs' | 'witness'
| {'binary_prefix', binary()}
| {'max_bytes', integer()}
| {'max_num', integer()}

	-type timestamp() :: integer()

	-type property() :: atom() | {term(), term()}

	Operational flag usage

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success returns

	Return type:	{ok, {[{key(), timestamp(), val()}], boolean()}}

	Success return when the get_many request uses neither the
'witness' flag nor the 'get_all_attribs' flag

	-type timestamp() :: integer()

	-type val() :: iodata()

	-type iodata() :: iolist() | binary()

	iolist() :: [char() | binary() | iolist()]

	Return type:	{ok, {[{key(), timestamp()}], boolean()}}

	Success return when the get_many uses 'witness' but
not 'get_all_attribs'

	Return type:	{ok, {[{key(), timestamp(), exp_time(), proplist()}], boolean()}}

	Success return when the get_many uses both 'witness'
and 'get_all_attribs'

	-type exp_time() :: time_t()

	-type proplist() :: [property()]

	property() :: atom() | {term(), term()}

	Trype:	{ok, {[{key(), timestamp(), val(), exp_time(), proplist()}], boolean()}}

	Success return when the get_many uses
'get_all_attribs' but not 'witness'

	exp_time() :: time_t()

Note

The boolean at the end of the success return indicates whether
or not the chain has more keys lexicographically after the last
key in the return (true for yes, false for no). When a
proplist() is returned, one of the properties in the list
will always be {val_len, Size::integer()}, where Size is
the size of the value blob in bytes.

Error returns

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_op_flag() was
found in the Flags argument.

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key is currently length zero and therefore unavailable.

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain.

	-type node() :: atom()

Examples

Successful retrieval of all keys from a table that currently has only
two keys. The boolean false’ indicates that there are no keys
following the ``foo` key:

> brick_simple:get_many(tab1, "", 5).
{ok,{[{<<"another">>,1271543102911775,<<"yes!">>},
 {<<"foo">>,1271543165272987,<<"Foo again?">>}],
 false}}

Successful retrieval of all keys from a table that currently has only
two keys, using the witness flag in the request:

> brick_simple:get_many(tab1, "", 5, ['witness']).
{ok,{[{<<"another">>,1271543102911775},
 {<<"foo">>,1271543165272987}],
 false}}

Successful retrieval of all keys from a table that currently has only
two keys, using the get_all_attribs flag in the request.:

> brick_simple:get_many(tab1, "", 5).
{ok,{[{<<"another">>,1271543102911775,<<"yes!">>,0,[{val_len,4}]},
 {<<"foo">>,1271543165272987,<<"Foo again?">>,0,[{val_len,6}]}],
 false}}

brick_simple:delete/4

Delete key Key from the table Table. The operation will fail if
Key does not already exist

	
brick_simple:delete(Table, Key)

	

	
brick_simple:delete(Table, Key, Flags)

	

	
brick_simple:delete(Table, Key, Timeout)

	

	
brick_simple:delete(Table, Key, Flags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table from which to delete the key-value pair

	-type table() :: atom()

	Key (key()) – Key to delete from the table

	-type key() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

Note

While the Key may be specified as either iolist() or
binary(), it will be converted into binary before operation
execution

	Parameters:	
	Flags (flags_list()) –
	List of operational flags to apply to the delete
operation.

	Optional; defaults to empty list

	-type flags_list() :: [do_op_flag()]

	-type do_op_flag() :: {'testset', timestamp()}
| 'must_exist' | 'must_not_exist'

	-type timestamp() :: integer()

	Operational flag usage
	{'testset', timestamp()}
	Fail the operation if the existing key’s timestamp is not
exactly equal to timestamp(). If used inside a
link:#brick-simple-do[micro-transaction], abort the
transaction if the key’s timestamp is not exactly equal to
timestamp(). This flag has priority over the
'must_exist' and 'must_not_exist' flags

	'must_exist'
	For use inside a link:#brick-simple-do[micro-transaction]:
abort the transaction if the key does not exist

	'must_not_exist'
	For use inside a link:#brick-simple-do[micro-transaction]:
abort the transaction if the key exists. This flag may be
useful when the relationship between two or more keys is
important to the client application

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	'ok'

Error returns

	Return type:	'key_not_exist'
	The operation failed because the key does not exist

	Return type:	{'ts_error', timestamp()}
	The operation failed because the {'testset', timestamp()}
flag was used and there was a timestamp mismatch. The
timestamp() in the return is the current value of the
existing key’s timestamp.

	timestamp() = integer()

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_op_flag() was
found in the Flags argument.

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key is currently length zero and therefore unavailable.

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain.

	-type node() :: atom()

Examples

Successful deletion of a key and its associated value and attributes:

> brick_simple:delete(tab1, <<"foo">>).
ok

Failed attempt to delete a key that does not exist:

> brick_simple:delete(tab1, "key6").
key_not_exist

Failed attempt to delete a key for which we have incorrectly specified
its current timestamp:

> brick_simple:delete(tab1, "goo", [{'testset', 12345}]).
{ts_error,1271543165272987}

Successful deletion of a key for which we have correctly specified its
current timestamp:

> brick_simple:delete(tab1, "goo", [{'testset', 1271543165272987}]).
ok

Successful deletion of a key, using a non-default operation timeout:

> brick_simple:delete(tab1, "key3", 30000).
ok

brick_simple:do/4

Send a list of primitive operations to the table Table. They will
be executed at the same time by a Hibari brick. If the first item in
the OpList is brick_server:make_txn() then the list of
operations is executed in the context of a micro-transaction: either
all operations will be executed successfully or none will be executed.

We term these “micro”-transactions because they are subject to certain
limitations that apply to all operations that use the
brick_simple:do() API:

	All impacted keys must be in the same table.

	All impacted keys must be in the same chain.

	All operations in the transaction must be sent in a single
brick_simple:do() call. Unlike some other databases, it is not
possible to request a transaction handle and to add operations to
that transaction in an one-by-one, “ad hoc” manner.

For further information about micro-transactions, see
link:hibari-sysadmin-guide.en.html#micro-transactions[Hibari System
Administrator’s Guide, “Micro-Transactions” section].

	
brick_simple:do(Table, OpList)

	

	
brick_simple:do(Table, OpList, Timeout)

	

	
brick_simple:do(Table, OpList, OpFlags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table in which to perform the operations

	-type table() :: atom()

	OpList (do_op_list()) –
	List of primitive operations to perform. Each primitive is
invoked using the brick_server:make_*() API

	-type do_op_list() :: [do1_op()]

	-type do1_op() ::
	brick_server:make_add(Key, Value, ExpTime, Flags)

	brick_server:make_replace(Key, Value, ExpTime, Flags)

	brick_server:make_set(Key, Value, ExpTime, Flags)

	brick_server:make_rename(Key, NewKey, ExpTime, Flags)

	brick_server:make_get(Key, Flags)

	brick_server:make_get_many(Key, Flags)

	brick_server:make_delete(Key, Flags)

	brick_server:make_txn()
	Include brick_server:make_txn() as the first item in
your OpList if you want the do operation to be
executed as an atomic transaction

	Note that the arguments for each primitive are the same as
those for the primitives when they are executed on their
own, with the exclusion of the Tab and Timeout
arguments, both of which serve as arguments to the overall
do operation rather than as arguments to the
primitives. For example, an add on its own is
brick_simple:add(Tab, Key, Value, ExpTime, Flags,
Timeout), whereas in the context of a do operation
an add primitive is brick_server:make_add(Key,
Value, ExpTime, Flags)

	For further information about each primitive, see
link:#brick-simple-add[brick_simple:add/6],
link:#brick-simple-replace[brick_simple:replace/6],
link:#brick-simple-set[brick_simple:set/6],
link:#brick-simple-rename[brick_simple:rename/6],
link:#brick-simple-get[brick_simple:get/4],
link:#brick-simple-get-many[brick_simple:get_many/5], and
link:#brick-simple-delete[brick_simple:delete/4]

	OpFlags (do_flags_list()) –
	List of operational flags to apply to the overall do
operation.

	Optional; defaults to empty list

	-type do_flags_list() :: [do_flag()]

	-type do_flag() :: 'fail_if_wrong_role' | 'ignore_role'

	Operational flag usage
	'fail_if_wrong_role'
	If the ‘do’ operation is sent to the wrong brick in the
target chain (e.g. a ‘read’ request mistakenly sent to
the ‘head’ brick or a ‘write’ request mistakenly sent to
the ‘tail’ brick), fail the transaction immediately. If
this flag is not used, the default behavior is for the
incorrect brick to forward the request to the correct
brick

	'ignore_role'
	If this flag is used, then whichever brick receives the
request will reply to the request directly, regardless of
the brick’s assigned role

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	[do1_res_ok]
	List of do1_res_ok, one for each primitive operation
specified in the do request. Return list order corresponds
to the order in which primitive operations are listed in the
request’s OpList. Note that if the do request does not
use transaction semantics, then some individual primitive
operations may fail without the overall do operation
failing

	Within the return list, possible do1_res_ok returns to
each individual primitive operation are the same as the
possible returns that the primitive operation type could
generate if it were executed on its own. For example, within
the do operation’s success return list, the possible
returns for a primitive add operation are the same as the
returns described in the
link:#brick-simple-add[brick_simple:add/6] section; potential
returns to a primitive replace operation are the same as
those described in the
link:#brick-simple-replace[brick_simple:replace/6] section; and
likewise for link:#brick-simple-set[set],
likewise for link:#brick-simple-rename[rename],
link:#brick-simple-get[get],
link:#brick-simple-get-many[get_many], and
link:#brick-simple-delete[delete].

Error returns

	Return type:	{txn_fail, [{integer(), do1_res_fail()}]}
	Operation failed because transaction semantics were used in
the do request and one or more primitive operations within
the transaction failed. The integer() identifies the
failed primitive operation by its position within the
request’s OpList. For example, a 2 indicates that the
second primitive listed in the request’s OpList
failed. Note that this position identifier does not count the
txn() specifier at the start of the OpList.

	do1_res_fail() indicates the type of failure for the
failed primitive operation. Possibilities are:
	{'key_exists', timestamp()}
	-type timestamp() :: integer()

	'key_not_exist'

	{'ts_error', timestamp()}

	'invalid_flag_present'

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_flag() was
found in the do request’s OpFlags argument. Note this
is a different error than an invalid flag being found within
an individual primitive

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key is currently length zero and therefore unavailable

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain

	-type node() :: atom()

Examples

Successful do operation adding two new keys to table tab1,
without transaction semantics:

> brick_simple:do(tab1, [brick_server:make_add("foo3", "bar3"),
 brick_server:make_add("foo4", "bar4")]).
[ok,ok]

Successful creation of two get primitives Do1` and ``Do2`, and
their subsequent combination into a ``do request, without
transaction semantics:

> Do1 = brick_server:make_get("foo").
{get,<<"foo">>,[]}
> Do2 = brick_server:make_get("foo2").
{get,<<"foo2">>,[]}
> brick_simple:do(tab1, [Do1, Do2]).
[{ok,1271543102911775,<<"Foo again?">>},key_not_exist]

Failed operation with transaction semantics. Because transaction
semantics are used, the failure of the primitive Do2b causes the
entire operation to fail:

> Do1b = brick_server:make_get("foo").
{get,<<"foo">>,[]}
> Do2b = brick_server:make_get("foo2", [must_exist]).
{get,<<"foo2">>,[must_exist]}
> brick_simple:do(tab1, [brick_server:make_txn(), Do1b, Do2b]).
{txn_fail,[{2,key_not_exist}]}

brick_simple:fold_table/7

Attempt a fold operation across all keys in a table. For general
information about the Erlang fold function that underlies this
operations, see http://www.erlang.org/doc/man/lists.html#foldl-3.

Important

Do not execute this operation while a data migration is being
performed

	
brick_simple:fold_table(Table, Fun, Acc, NumItems, Flags)

	

	
brick_simple:fold_table(Table, Fun, Acc, NumItems, Flags, MaxParallel)

	

	
brick_simple:fold_table(Table, Fun, Acc, NumItems, Flags, MaxParallel, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table across which to perform the fold operation

	-type table() :: atom()

	Fun (fun_arity_2()) – Function to apply to successive elements of the list

	-type fun_arity_2() :: fun(({ChainName, TupleFromGetMany}, Acc) -> Acc)
	TupleFromGetMany is a single result tuple from a
link:#brick-simple-get-many[brick_simple:get_many()]
result. Its format can vary according to the Flags
argument, which is passed as-is to a get_many() call. For
example, if Flags = [], then TupleFromGetMany
will match {Key, TS, Value}. If Flags = [witness],
then TupleFromGetMany will match {Key, TS}

	Acc
	The accumulator term

	Acc (term()) – Initial value of the accumulator term

	NumItems (integer()) – Batch size used for get_many operations used by the fold
function

	Flags (flags_list()) –
	List of operational flags to apply to the fold_table
operation, The supported flags are the same as those for
link:#brick-simple-get-many[brick_simple:get_many()]

	-type flags_list() :: [do_op_flag() | property()]

	-type do_op_flag() :: 'get_all_attribs' | 'witness'
{'binary_prefix', binary()} |
{'max_bytes', integer()}

	-type property() :: atom() | {term(), term()}

	Operational flag usage
	'get_all_attribs'
	Return all attributes of each key. May be used in
combination with the witness flag

	'witness'
	Do not return the value blobs in the result. This flag will
guarantee that the brick does not require disk access to
satisfy this request

	{'binary_prefix', binary()}
	Return only keys that have a binary prefix that is exactly
equal to binary()

	{'max_bytes', integer()}
	Return only as many keys as the sum of the sizes of their
corresponding value blobs does not exceed integer()
bytes

	MaxParallel (integer()) –
	If MaxParallel = 0, a true fold will be performed. If
MaxParallel >= 1, then an independent fold will be
performed on each chain, with up to MaxParallel number of
folds running in parallel. The result from each chain fold
will be returned to the caller as-is, i.e. will not be
combined like in a “reduce” phase of a map-reduce cycle

	Optional; defaults to 0

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	{ok, Acc::term(), Iterations::integer()}

Error return

	Return type:	{error, Error::term(), Acc::term(), Iterations::integer()}

Examples

to be added

brick_simple:fold_key_prefix/9

For a binary key prefix Prefix, fold over all keys in table
Table starting with StartKey, sleeping for SleepTime
milliseconds between iterations and using Flags and NumItems
as arguments to link:#brick-simple-get-many[brick_simple:get_many()].
For general information about the Erlang fold function that underlies
this operations, see http://www.erlang.org/doc/man/lists.html#foldl-3.

Important

Do not execute this operation while a data migration is being
performed

	
brick_simple:fold_key_prefix(Table, Prefix, Fun, Acc, Flags)

	

	
brick_simple:fold_key_prefix(Table, Prefix, StartKey, Fun, Acc, Flags, NumItems, SleepTime, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table in which to perform the fold operation

	-type table() :: atom()

	Prefix (binary()) – Key prefix for which to perform the fold operation

	StartKey (binary()) –
	Key at which to initiate the fold operation

	Optional; defaults to equal your specified Prefix

	Fun (fun_arity_2()) – Function to apply to successive elements of the list

	-type fun_arity_2() :: fun(({ChainName, TupleFromGetMany}, Acc) -> Acc)
	TupleFromGetMany is a single result tuple from a
link:#brick-simple-get-many[brick_simple:get_many()]
result. Its format can vary according to the Flags
argument, which is passed as-is to a get_many() call. For
example, if Flags = [], then TupleFromGetMany
will match {Key, TS, Value}. If Flags = [witness],
then TupleFromGetMany will match {Key, TS}

	Acc
	The accumulator term

	Acc (term()) – Initial value of the accumulator term

	Flags (flags_list()) –
	List of operational flags to apply to the fold_key_prefix
operation. The supported flags are the same as those for
link:#brick-simple-get-many[brick_simple:get_many()],
excluding the {'binary_prefix', binary()} flag. This flag
is inappropriate since the key prefix is passed directly
through the Prefix argument of
brick_simple:fold_key_prefix()

	-type flags_list() :: ['get_all_attribs' | 'witness'
| {'max_bytes', integer()}]

	Operational flag usage

	'get_all_attribs'
	Return all attributes of each key. May be used in
combination with the witness flag

	'witness'
	Do not return the value blobs in the result. This flag
will guarantee that the brick does not require disk
access to satisfy this request

	{'max_bytes', integer()}
	Return only as many keys as the sum of the sizes of
their corresponding value blobs does not exceed
integer() bytes

	NumItems (integer()) – Batch size used for get_many operations used by the fold
function

	SleepTime (integer()) –
	Sleep time between interations, in milliseconds

	Optional; defaults to 0

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	{ok, Acc::term(), Iterations::integer()}

Error return

	Return type:	{error, Error::term(), Acc::term(), Iterations::integer()}

Examples

to be added

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Client API: UBF

link:http://github.com/ubf/ubf[The UBF protocol] is a
formally-specified family of protocols that are supported by a large
number of client languages. This section attempts to describe the
layers of the UBF protocol stack, how to use the UBF client in Erlang
and other languages, and how to use that client to access a Hibari
storage cluster.

The Hibari source distribution includes UBF/EBF protocol support for the
following languages:

	Erlang, see xref:using-ubf-erlang-client[]

	Java, see xref:using-ubf-java-client[]

	Python, see xref:using-ubf-python-client[]

[[hibari-server-impl-of-ubf-proto-stack]]

The Hibari Server’s Implementation of the UBF Protocol Stack

UBF(A): Bottom Layer, transport and session protocol layer

This layer plays the same basic role as many other serialized data
transport protocols that use TCP for host-to-host transport, such as
link:http://en.wikipedia.org/wiki/Open_Network_Computing_Remote_Procedure_Call[ONC-RPC],
link:http://en.wikipedia.org/wiki/IIOP[CORBA IIOP],
link:http://en.wikipedia.org/wiki/Protocol_buffers[Protocol Buffers],
and link:http://en.wikipedia.org/wiki/Thrift_(protocol)[Thrift].

Hibari servers support several of these session protocols on top
of a TCP/IP transport protocol. The choice of session protocol is
a matter of convenience and/or support for the application
developer. Hibari should be as easy for an app developer to use
Ruby and JSON-RPC as it is to use Python and Thrift or EBF.

	UBF(A), Joe Armstrong’s original session layer protocol

	EBF, the Erlang Binary Format. The session layer protocol is a
thin, efficient that uses the Erlang BIFs term_to_binary() and
binary_to_term() to serialize Erlang data terms. This protocol
is very closely related to the link:http://bert-rpc.org/[BERT protocol].

	JSON over TCP, also called JSF (the JavaScript
Format). Erlang terms are encoded as
link:http://en.wikipedia.org/wiki/JSON[JSON terms]
and transmitted directly over a TCP transport. This
protocol is not in common use but is easy to implement in the UBF
server framework.

	HTTP, the link:http://en.wikipedia.org/wiki/HTTP[Hypertext
Transfer Protocol]. This protocol is used to support Hibari’s
link:http://en.wikipedia.org/wiki/JSON-RPC[JSON-RPC] server.

	link:http://en.wikipedia.org/wiki/Thrift_(protocol)[Thrift].
Similar to EBF, except that Thrift’s binary encoding is used for
the wire protocol instead of UBF(A) or Erlang’s native wire
formats.

	link:http://en.wikipedia.org/wiki/Protocol_buffers[Protocol Buffers].
Similar to EBF, except that Google’s Protocol Buffers binary
encoding is used for the wire protocol instead of UBF(A) or
Erlang’s native wire formats.
Hibari support is experimental (i.e. not yet implemented).

	link:http://hadoop.apache.org/avro/docs/current/[Avro].
Similar to EBF, except that Avro’s binary encoding is used for the
wire protocol instead of UBF(A) or Erlang’s native wire formats.
Hibari support is experimental (i.e. not yet implemented).

UBF(B): Middle Layer, the “contract”

UBF(B) is a programming language for describing types in UBF(A)
and protocols between clients and servers. UBF(B) is roughly
equivalent to to Verified XML, XML-schemas, SOAP and WDSL.

This layer enforces a protocol “contract”, a formal specification of
all data sent by the client and by the server. Any data that does not
precisely conform to the protocol is rejected by the contract checker
(which is embedded in the server). If the client wishes, it may also
use the contract checker to validate data sent by the server, though
this not commonly done.

UBF(C): Top Layer, the UBF Metaprotocol

The metaprotocol is used at the beginning of a UBF session to select
one of the UBF(B) contracts that the TCP listener is capable of
offering. At the moment, Hibari servers support only the “gdss”
contract, but other contracts may be added in the future.

[[ubf-representation-of-strings]]

UBF representation of strings vs. binaries

The Erlang language does not have a data type specifically for
strings. Instead, strings are typically represented as lists of
integers (ASCII byte values) and/or binaries.

A UBF contract makes a distinction between a string, list, and
binary. In the case of a string, UBF(A) encodes a string using the
notation {'#S', "Hello, world!"} to represent the string “Hello,
world!”.

This string encoding is cumbersome to use for developers; in Erlang,
the ubf.hrl header file includes a macro ?S("Hello, world!")
as a slightly less ugly shortcut. When using other languages, the
2-tuple and the atom '#S' would be created as any other 2-tuple
and atom.

Fortunately, there is only one case where the string type is
necessary: using the startSession metaprotocol command to start
using the Hibari data server contract. An example will be shown
below.

[[using-ubf-in-any-language]]

Steps for Using a UBF-based Protocol in Any Language

The steps to use a UBF-based protocol are the same in any language.

	Create a connection to the UBF server.
	... or the EBF server, or the JSON-RPC server, or the Thrift
server, or the

	Use the UBF metaprotocol to start using the gdss contract,
i.e. the Hibari server contract.

	Send one or more Hibari server queries and decode the respective
server responses.

	Close the connection to the UBF server.

[[the-hibari-ubf-protocol-contract]]

The Hibari UBF Protocol Contract

The Hibari UBF Protocol contract can be found in the file
ubf_gdss_plugin.con.

Note

See the Hibari source code for the most up-to-date version of
this file. link:./misc-codes/ubf_gdss_plugin.con[This documentation has a copy
of ubf_gdss_plugin.con], though it may be slightly out-of-date.

The names of the UBF types specified in the contract may differ
slightly from the names of the types used in this document’s
xref:client-api-erlang[]. For example, the UBF contract calls the key
expiration time time exp_time(), while the type system in this
document calls it expiry(). However, in all cases of slightly
different names, the fundamental data type that both names use is the
same: e.g. integer() for expiration time.

For each command, the UBF contract uses the following naming
conventions:

	CommandName_req() for the request sent from client -> server,
e.g. set_req() for the set command.

	CommandName_res() for the response sent from server -> client,
e.g. set_res() for the set response.

The general form of a UBF RPC call is a tuple. The first element in
the tuple is the name of the command, and the following elements are
arguments for that command. The response can be any Erlang term, but
the Hibari contract will only return the atom or tuple types.

The following is a mapping of UBF client request type to its Erlang
API function, in alphabetical order.:

	add_req() -> brick_simple:add(), see xref:brick-simple-add[].

	delete_req() -> brick_simple:delete(), see
xref:brick-simple-delete[].

	do_req() -> brick_simple:do(), see xref:brick-simple-do[].

	get_req() -> brick_simple:get(), see xref:brick-simple-get[].

	get_many_req() -> brick_simple:get_many(), see
xref:brick-simple-get-many[].

	replace_req() -> brick_simple:replace(), see
xref:brick-simple-replace[].

	set_req() -> brick_simple:set(), see xref:brick-simple-set[].

	rename_req() -> brick_simple:rename(), see
xref:brick-simple-rename[].

[[using-ubf-erlang-client]]

Using the UBF Client Library for Erlang

Important

	When using the Erlang shell for experimentation & prototyping, that
shell must have the path to the Erlang UBF client
library in its search path. The easiest way to do this is to use
the arguments -pz /path/to/ubf/library/ebin to your Erlang
shell’s erl command.

	When writing code, the statement -include("ubf.hrl"). at the top
of your source module to gain access to the ?S() macro. Due to
limitations in the Erlang shell, macros cannot be used in the shell.

As outlined in xref:using-ubf-in-any-language[], the first step is to
create a connection to a Hibari server. If the Hibari cluster has
multiple nodes, then it doesn’t matter which one that you connect to:
all nodes can handle any UBF request and will route the query to the
proper brick.

	Create a connection to the UBF server (on “localhost” TCP port 7581):

(asdf@bb3)54> {ok, P1, _} = ubf_client:connect("localhost", 7581, [{proto, ubf}], 5000).
{ok,<0.139.0>,{'#S', "gdss_meta_server"}}

The second step is to use the UBF metaprotocol to select the Hibari
server, contract, called “gdss”, for all further commands for this
connection.

Tip

The Hibari server contract is “stateless”. All replies terms
from the ubf_client:rpc/2 function use the form
{reply,ServerReply,UBF_StateName}. Because the Hibari
server contract is stateless, the UBF_StateName will
always be the atom none.

	Use the UBF metaprotocol to request the “gdss” contract:

(asdf@bb3)55> ubf_client:rpc(P1, {startSession, {'#S', "gdss"}, []}).
{reply,{ok,ok},none}

Now that the UBF connection is set up, we can use it to set a key
“foo”.

	Set the key “foo” in table tab1 with the value “foo val”, no
expiration time, no flags, and a timeout of 5 seconds:

(asdf@bb3)59> ubf_client:rpc(P1, {set, tab1, <<"foo">>, <<"foo val">>, 0, [], 5000}).
{reply,ok,none}

Note

Note that the return value of both the set_req() (in the
example above) and get_req() (in the example below) return the
same types described in the xref:brick-simple-set[] and
xref:brick-simple-get[], respectively.

The only difference is that the ubf_client:rpc/2 function wraps
the server’s reply in a 3-tuple: {reply,ServerReply,none}.

	Get the key “foo” in table tab1, timeout in 5 seconds:

(asdf@bb3)66> ubf_client:rpc(P1, {get, tab1, <<"foo">>, [], 5000}).
{reply,{ok,1273009092549799,<<"foo val">>},none}

If the client sends a request that violates the contract, the server
will tell you, as in this example.

	Send a contract-violating request:

(asdf@bb3)89> ubf_client:rpc(P1, {bbb, 3000}).
{reply,{clientBrokeContract,{bbb,3000},[]},none}

When you are done with the connection, it is polite to close the
connection explicitly. The server will quietly clean up its side
of the connection if the client forgets to call or cannot call
stop/1.

	Close the UBF connection:

(asdf@bb3)92> ubf_client:stop(P1).
ok

[[using-ubf-java-client]]

Using the UBF Client Library for Java

The source code for the UBF client library for Java is included in
the UBF source repository at
link:http://github.com/ubf/ubf[http://github.com/ubf/ubf], in
the priv/java subdirectory.

Compiling the UBF client library for Java

	Please update your UBF client library code to the “master” branch
for a date after 10 May 2010, or use the Git tag “v1.14” or later.
Versions of the library before 10 May 2010 and tag “v1.14” have
several bugs that will prevent the UBF client from working
correctly.

	Change directory to the priv/java directory of the UBF client
library source distribution.

	Run make.

	(Optional) Copy the class files in the classes subdirectory to
a suitable directory for your Java development environment.

Compiling the UBF client library test program HibariTest.java

	Change directory to the gdss-ubf-proto/priv/java subdirectory in
the Hibari source distribution.

	Edit the Makefile to change the UBF_CLASSES_DIR variable to
point to the priv/java/classes subdirectory of the UBF package’s
source code (or the subdirectory where those classes have been
formally installed on your system).

	Run the following two make commands. The second assumes that the
Hibari server’s UBF server is on the local machine, “localhost”:

$ make HibariTest
$ make run-HibariTest

	If the Hibari server is not running on the local machine, then run
make -n run-HibariTest to show the java command that is
used to run the test program. Cut-and-paste the command into your
shell, then edit the last argument to specify the hostname of a
Hibari server.

Examining the HibariTest.java test program

The main() function does three things:

	Create a new UBF connection to a Hibari server (hostname/IP address
is specified in the first command line argument) and requests the
gdss contract via the UBF metaprotocol.

	Run the small test cases in the test_hibari_basics() method.

	Close the UBF session and exit.

The ubf.HibariTest.main() method

public class HibariTest {

 public static void main(String[] args) throws Exception {
 Socket sock = null;
 UBFClient ubf = null;

 try {
 sock = new Socket(args[0], 7581);
 ubf = UBFClient.new_via_sock(new UBFString("gdss"), new UBFList(),
 new FooHandler(), sock);
 } catch (Exception e) {
 System.out.println(e);
 System.exit(1);
 }

 test_hibari_basics(ubf);

 ubf.stopSession();
 System.out.println("Success, it works");
 System.exit(0);
 }
 /* ... */
 }

The test_hibari_basics() method performs the same basic UBF
operations as the Python EBF demonstration script described in
xref:using-ubf-python-client[]. Unlike the Python demo script, the
demo program does not use the Hibari do() command but rather then
single-operation commands like get(and set().

	Delete the key foo from table tab1:

public static void test_hibari_basics(UBFClient ubf)
 throws IOException, UBFException {
 // setup
 UBFObject res1 = ubf.rpc(
 UBF.tuple(new UBFAtom("delete"), new UBFAtom("tab1"),
 new UBFBinary("foo"), new UBFList(),
 new UBFInteger(4000)));
 System.out.println("Res 1:" + res1.toString());

	Add the key foo to table tab1:

// add - ok
UBFObject res2 = ubf.rpc(
 UBF.tuple(new UBFAtom("add"), atom_tab1,
 new UBFBinary("foo"), new UBFBinary("bar"),
 new UBFInteger(0), new UBFList(),
 new UBFInteger(4000)));
System.out.println("Res 2:" + res2.toString());
if (! res2.equals(atom_ok))
 System.exit(1);

	Add the key foo to table tab1 again, this time expecting a failure:

// add - ng
UBFObject res3 = ubf.rpc(
 UBF.tuple(new UBFAtom("add"), atom_tab1,
 new UBFBinary("foo"), new UBFBinary("bar"),
 new UBFInteger(0), new UBFList(),
 new UBFInteger(4000)));
System.out.println("Res 3:" + res3.toString());
if (! ((UBFTuple)res3).value[0].equals(atom_key_exists))
 System.exit(1);

	Get the key foo from table tab1:

// get - ok
UBFObject res4 = ubf.rpc(
 UBF.tuple(new UBFAtom("get"), atom_tab1,
 new UBFBinary("foo"), new UBFList(),
 new UBFInteger(4000)));
System.out.println("Res 4:" + res4.toString());
if (! ((UBFTuple)res4).value[0].equals(atom_ok) ||
 ! ((UBFTuple)res4).value[2].equals("bar"))
 System.exit(1);

	Set the key foo in table tab1 to bar bar:

// set - ok
UBFObject res5 = ubf.rpc(
 UBF.tuple(new UBFAtom("set"), atom_tab1,
 new UBFBinary("foo"), new UBFBinary("bar bar"),
 new UBFInteger(0), new UBFList(),
 new UBFInteger(4000)));
System.out.println("Res 5:" + res5.toString());
if (! res5.equals(atom_ok))
 System.exit(1);

	Get foo again and verify that the value is bar bar:

// get - ok
UBFObject res6 = ubf.rpc(
 UBF.tuple(new UBFAtom("get"), atom_tab1,
 new UBFBinary("foo"), new UBFList(),
 new UBFInteger(4000)));
System.out.println("Res 6:" + res6.toString());
if (! ((UBFTuple)res6).value[0].equals(atom_ok) ||
 ! ((UBFTuple)res6).value[2].equals("bar bar"))
 System.exit(1);

The UBF event handler interface

Each UBFClient instance uses a separate thread to read data from
the server and do any of the following:

	Signal to the other thread that a synchronous RPC response was
received from the server.

	Run a callback function when an event_out asynchronous event is
received from the server.

	The socket was closed unexpectedly.

In cases #2 and #3, a class that implements the UBFEventHandler
interface is used to define the action to be taken in those cases.

The HibariTest.java contains a sample implementation of callback
functions for asynchronous events. A real application would probably
want to do something much more helpful than this example does.

public static class FooHandler implements UBFEventHandler {
 public FooHandler() {
 }
 public void handleEvent(UBFClient client, UBFObject event) {
 System.out.println("Hey, got an event: " + event.toString());
 }
 public void connectionClosed(UBFClient client) {
 System.out.println("Hey, connection closed, ignoring it\n");
 }
}

Tip

See xref:the-ubf-hibaritest-main-method[] for an example that uses
this FooHandler class.

[[using-ubf-python-client]]

Using the EBF Client Library for Python

The source code for the EBF client library for Python is included in
the UBF source repository at
link:http://github.com/ubf/ubf[http://github.com/ubf/ubf], in
the priv/python subdirectory.

NOTE: Recall that the EBF protocol is very closely related to UBF. The
only significant difference is the “layer 5” session protocol layer:
instead of using the UBF(A) protocol, the EBF (Erlang Binary Format)
protocol is used instead. See
xref:hibari-server-impl-of-ubf-proto-stack[] for more details.

In addition, you will need the “py_interface” package, developed by
Tomas Abrahamsson and others. “py-interface” is distributed under the
link:http://www.fsf.org/licensing/education/licenses/lgpl.html[GNU
Library General Public License]. A git repository is hosted at
repo.or.cz. To clone it and build it, use:

$ git clone git://repo.or.cz/py_interface.git
$ cd py_interface
$ autoconf
$./configure
$ make
$ pwd

Use the output of the last command, pwd, to remember the full
directory path to the “py-interface” library. The example below
assumes that path is /tmp/py-interface.

The pyebf.py file contains a small unit test that makes several
calls to the Hibari UBF contract’s do_req() command. The results
of (almost) every command are verified using the assert function.

env PYTHONPATH=/path/to/py_interface python pyebf.py

	Connect to the Hibari server on “localhost” TCP port 7580 and use
the UBF metaprotocol to switch to the gdss contract:

login
ebf.login('gdss', 'gdss_meta_server')

	Delete the key 'foo' from table tab1:

setup
req0 = (Atom('do'), Atom('tab1'), [(Atom('delete'), 'foo', [])], [], 1000)
res0 = ebf.rpc('gdss', req0)

	Get the key 'foo' from table tab1:

get - ng
req1 = (Atom('do'), Atom('tab1'), [(Atom('get'), 'foo', [])], [], 1000)
res1 = ebf.rpc('gdss', req1)
assert res1[0] == 'key_not_exist'

	Add the key 'foo' to table tab1. The do_req()
interface requires managing the timestamp integers explicitly by
the client; the timestamp 1 is used here:

add - ok
req2 = (Atom('do'), Atom('tab1'),
 [(Atom('add'), 'foo', 1, 'bar', 0, [])], [], 1000)
res2 = ebf.rpc('gdss', req2)
assert res2[0] == 'ok'

	Add the key 'foo' to table tab1:

add - ng
req3 = (Atom('do'), Atom('tab1'),
 [(Atom('add'), 'foo', 1, 'bar', 0, [])], [], 1000)
res3 = ebf.rpc('gdss', req3)
assert res3[0][0] == 'key_exists'
assert res3[0][1] == 1

	Get the key 'foo' from table tab1, verifying that the
timestamp is still 1 and value is still 'bar':

get - ok
req4 = (Atom('do'), Atom('tab1'), [(Atom('get'), 'foo', [])], [], 1000)
res4 = ebf.rpc('gdss', req4)
assert res4[0][0] == 'ok'
assert res4[0][1] == 1
assert res4[0][2] == 'bar'

	Set the key 'foo' from table tab1, using a new timestamp
2:

set - ok
req5 = (Atom('do'), Atom('tab1'),
 [(Atom('set'), 'foo', 2, 'baz', 0, [])], [], 1000)
res5 = ebf.rpc('gdss', req5)
assert res5[0] == 'ok'

	Get the key 'foo' from table tab1, verifying both the new
timestamp and new value:

get - ok
req6 = (Atom('do'), Atom('tab1'), [(Atom('get'), 'foo', [])], [], 1000)
res6 = ebf.rpc('gdss', req6)
assert res6[0][0] == 'ok'
assert res6[0][1] == 2
assert res6[0][2] == 'baz'

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Client API: Thrift

“TBF” is a link:https://github.com/apache/thrift[Thrift protocol]
defined by UBF contract xref:the-hibari-ubf-protocol-contract[].
This section attempts to describe the Hibari Thrift API which allows
users to access Hibari with Thrift clients in any Thrift supported
programming languages, and how to extend the API for application uses.

The Hibari Thrift API

The Hibari Thrift API is defined as Hibari Service in
link:./misc-codes/hibari.thrift[hibari.thrift]. At the time this API
was developed, only Thrift 0.4.0 is available to us. This version is
our first attempt to adopt Thrift. Some of the functions and options
are not yet supported.

Important

The Hibari Thrift API only supports Thrift 0.4.0 or above.

service Hibari {

 /**
 * Check connection availability / keepalive
 */
 oneway void keepalive()

 /**
 * Hibari Server Info
 */
 string info()

 /**
 * Hibari Description
 */
 string description()

 /**
 * Hibari Contract
 */
 string contract()

 /**
 * Add
 */
 HibariResponse Add(1: Add request)
 throws (1:HibariException ouch)

 /**
 * Replace
 */
 HibariResponse Replace(1: Replace request)
 throws (1:HibariException ouch)

 /**
 * Set
 */
 HibariResponse Set(1: Set request)
 throws (1:HibariException ouch)

 /**
 * Rename
 */
 HibariResponse Rename(1: Rename request)
 throws (1:HibariException ouch)

 /**
 * Delete
 */
 HibariResponse Delete(1: Delete request)
 throws (1:HibariException ouch)

 /**
 * Get
 */
 HibariResponse Get(1: Get request)
 throws (1:HibariException ouch)
 }

For each primitive utility function, it has exactly one input
parameter. The parameter is an object that has a name matching its
function. The object carries all mandatory and optional parameters to
Hibari. This object could also be used to implement micro-transactions
in the future.

Mapping UBF Contract Types to Thrift Types

You can find more details of the UBF / Thrift type conversion in
(link:https://github.com/ubf/ubf-thrift[UBF-Thrift]).

Mapping UBF Contract to Thrift Service

Mapping UBF types to thrift primitives is different from mapping UBF
contracts to service. Thrift mainly uses 2 different types to compose
a request (struct and field).

If you are using Thrift to generate client code, you probably don’t
need to worry about how the request being constructed. Visit
link:http://wiki.apache.org/thrift/ThriftGeneration[Thrift Wiki] for
the instruction to install Thrift and to generate client code. You
will also need link:./misc-codes/hibari.thrift[hibari.thrift] to get
started.

If you are interested in the UBF contract, the Hibari NTBF contract
can be found in the file of ntbf_gdss_plugin.con.

Examples of using a Thrift client

Once you get the generated code, connecting to Hibari is easy. For
example, adding the key 'fookey' to table tab1 with a value of
'Hello, world!' in the following 3 languages.

In Erlang:

-include("hibari_thrift.hrl").

% init
{ok, Client} = thrift_client:start_link("127.0.0.1", 7600, hibari_thrift),

% create the input parameter object
Request = #add{table=<<"tab1">>, key=<<"fookey">>, value=<<"Hello, world!">},

% send request
try
 HibariResponse = thrift_client:call(Client, 'Add', [Request]),
catch
 HibariException ->
 HibariException
end,

ok = thrift_client:close(Client).

In Java:

import com.hibari.rpc.*;

// init
TTransport transport = new TSocket("127.0.0.1", 7600);
TProtocol proto = new TBinaryProtocol(transport);
Hibari.Client client = new Hibari.Client(proto);
transport.open();

// create the input parameter object
Add request = new Add("tab1", ByteBuffer.wrap("fookey".getBytes()),
 ByteBuffer.wrap("Hello, world!".getBytes())))

// send request
try {
 HibariResponse response = client.Add(request);
} catch (HibariException e) {
 // ...
}

transport.close();

In python:

from hibari import Hibari

init
transport = TSocket.TSocket('localhost', 7600)
transport.setTimeout(None)
transport = TTransport.TBufferedTransport(transport)
protocol = TBinaryProtocol.TBinaryProtocol(transport)
client = Hibari.Client(protocol)
transport.open()

create the input parameter object
request = Add()
request.table = "tab1"
request.key = b"fookey"
request.value = b"Hello, world!"

send request
response = client.Add(request)

transport.close()

Mapping TBF Contract Responses From Thrift Client

TBF only responses one of two generic types to all functions in Hibari
Thrift API, HibariResponse or HibariException. One could expect a
HibariResponse in an any successful cases. Otherwise a
HibariException should be thrown.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Building Hibari from Source

This section describes the basic recipes to build the following items:

	Hibari Release Package

	Hibari Documentation

	Erlang/OTP System

Required Third Party Software

Before getting started, review this checklist of tools and
software. Please install and set up as needed.

Mandatory Items (Required for Building Hibari)

The following software is required in order to download Hibari and
build a release package:

	Git – http://git-scm.com/

	Must be version 1.5.4 or newer.

	1.7.3.4 is the version most recently tested for Hibari.

	If you haven’t yet done so, please configure your email address
and name for Git:

$ git config --global user.email "you@example.com"
$ git config --global user.name "Your Name"

	If you haven’t yet done so, you must sign up for a GitHub
account – https://github.com/

	Anonymous read-only access using the GIT protocol is default.

	Team members with read-write access: be sure to add your SSH
public key under your GitHub account.

	Python – http://www.python.org

	Required by Repo

	Must be version 2.4 or newer

	2.7 is the version most recently tested for Hibari.

Caution

Python 3.x might be too new.

	Repo – http://source.android.com/source/git-repo.html

	Install as follows:

$ mkdir -p ~/bin
$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

	The downloading and packaging process also uses Rebar
(https://github.com/basho/rebar/wiki) but this tool is included in
the Hibari Git repositories so you do not need to install it
separately.

	OpenSSL – http://www.openssl.org/

	Required for Erlang’s crypto module.

	Erlang/OTP – http://www.erlang.org/

	Must be version R16B01 or newer.
	17.4 is the version most recently tested for Hibari.

	For information on building Erlang/OTP from source, see
<<ErlangOTP>> in this document.

Optional Items (Required for Building Hibari’s Documentation)

The following software is required only if you want to build Hibari’s
documentation from source. Note that an online version of the
documentation is available at http://hibari.github.com/hibari-doc/.

	AsciiDoc – http://www.methods.co.nz/asciidoc/index.html
	Must be version 8.6.1 or newer
	8.6.4 is the version most recently tested for Hibari

	Plus the following support tools:
	ImageMagick – http://www.imagemagick.org/

	Graphviz – http://www.graphviz.org/

	Mscgen – http://www.mcternan.me.uk/mscgen/

	Dia – http://projects.gnome.org/dia/

	dblatex – http://dblatex.sourceforge.net/
	Optional for building a PDF version of Hibari’s documentation.

	w3m – http://w3m.sourceforge.net/
	Optional for building a text version of Hibari’s documentation.

Downloading Hibari

Follow these steps to download the Hibari repositories from GitHub.

	Create a working directory and retrieve the Hibari manifest files:

$ mkdir working-directory
$ cd working-directory
$ repo init -u git://github.com/hibari/manifests.git -m hibari-default.xml

Note

Your “Git” identity is needed during the repo init step. Please
enter the name and email of your GitHub account if you have one.
Team members having read-write access should use repo init -u
git@github.com:hibari/manifests.git -m hibari-default-rw.xml.

Tip

If you want to checkout the latest development version of Hibari,
please append `` -b dev`` to the repo init command.

	Download Hibari’s Git repositories:

$ Repo sync

After the repo sync, your working directory has the following structure:

<working-directory>
 |- hibari/
 |- .git/
 |- .gitignore
 |- Makefile
 |- dialyze-ignore-warnings.txt
 |- dialyze-nospec-ignore-warnings.txt
 |- lib/ <1>
 |- <application_name>/
 |- .git/
 |- .gitignore
 |- ebin/
 |- include/
 |- *.hrl
 |- priv/
 |- rebar.config
 |- src/
 |- <application_name>.app.src
 |- *.erl
 |- test/
 |- eunit/
 |- *.erl
 |- eqc/
 |- *.erl
 :
 |- rebar
 |- rebar.config
 |- rel/ <2>
 |- files/
 |- app.config
 |- erl
 |- hibari
 |- hibari-admin
 |- nodetool
 |- nodetool-admin
 |- vm.args
 |- hibari/
 :
 |- releases/
 |- <release_vsn>/
 :
 :
 :
 |- reltool.config
 |- hibari-doc/ <3>
 :
 |- manifests/ <4>
 :
 |- patches/ <5>
 :
 |- rebar/ <6>
 :
 |- .repo/
 :

<1> Applications
<2> Releases
<3> Documentation
<4> Manifests
<5> Patches
<6> Rebar

Building the Hibari Release Package

Follow these steps to build a Hibari release package.

	Building basic recipe:

$ cd working-directory/hibari
$ make

Tip

If the response is “make: erl: Command not found”, please make
sure Erlang/OTP is installed and “otp-installing-directory-name/bin”
is added to your $PATH environment.

	Release packaging basic recipe:

$ cd working-directory/hibari
$ make package

Note

A release package tarball “hibari-X.Y.Z-dev-ARCH-WORDSIZE.tgz”
and md5sum file “hibari-X.Y.Z-dev-ARCH-WORDSIZE-md5sum.txt” is written
into your working-directory. You can then use these files to perform a
single-node or multi-node Hibari installation as described in
<<getting-started>>.

[[HibariAsciiDoc]]

Building Hibari’s Documentation

Follow these steps to build Hibari’s documentation.

	Building Hibari’s “Guides” basic recipe:

$ cd working-directory/hibari-doc/src/hibari
$ make clean -OR- make realclean
$ make

	Building Hibari’s “Website” basic recipe:

$ cd working-directory/hibari-doc/src/hibari/website
$ make clean -OR- make realclean
$ make

Note

HTML documentation is written in the ”./public_html” directory.

Hibari’s documentation is authored using AsciiDoc and a few auxillary
tools:

	ImageMagick

	dblatex

	Dia

	Graphviz

	Mscgen

	w3m

Hibari’s documentation is generated with AsciiDoc and a manually
modified version of the a2x tool. A fake lang-ja.conf file can be
easily created by making a symlink to the lang-en.conf file.

diff -r -u 8.6.4-orig/bin/a2x.py 8.6.4/bin/a2x.py
--- 8.6.4-orig/bin/a2x.py 2011-04-24 00:50:26.000000000 +0900
+++ 8.6.4/bin/a2x.py 2011-04-24 00:35:55.000000000 +0900
@@ -156,7 +156,10 @@
 def shell_copy(src, dst):
 verbose('copying "%s" to "%s"' % (src,dst))
 if not OPTIONS.dry_run:
- shutil.copy(src, dst)
+ try:
+ shutil.copy(src, dst)
+ except shutil.Error:
+ return

 def shell_rm(path):
 if not os.path.exists(path):
 Only in 8.6.4/etc/asciidoc: lang-ja.conf

[[ErlangOTP]]

Building and Installing Erlang/OTP

Follow these steps to download and build Erlang/OTP from source, and
to install the system. These steps provide a basic recipe; not all
options are addressed.

Note

Please make sure to have the ‘openssl-devel’ package installed
on your system before configuring and building Erlang/OTP.

	Download the source code for your Erlang/OTP system:

$ cd working-directory
$ wget http://www.erlang.org/download/otp_src_R14B01.tar.gz

	Untar the source code for your Erlang/OTP system:

$ tar -xzf otp_src_R14B01.tar.gz

	Configure Erlang/OTP:

$ cd working-directory/otp_src_R14B01
$./configure --prefix=otp-installing-directory-name

	Build Erlang/OTP:

$ make

	Install Erlang/OTP:

$ sudo make install

Caution

Please make sure “otp-installing-directory-name/bin” is added
to your $PATH environment.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Contributing to Hibari

GitHub, Git, and Repo

to be added

List the working directories for all of Hibari’s “projects”:

$ repo forall -c "pwd"

Note

Each project has a corresponding Git repository and (default)
revision. Check the “manifests/hibari-default.xml” file for
details.

Start a new topic (e.g. new-topic-name) branch:

$ repo start new-topic-name `repo forall -c "pwd" | xargs echo`

Abandon an existing topic (e.g. topic-name) branch:

$ repo abandon topic-name `repo forall -c "pwd" | xargs echo`

Track and checkout the master branch:

$ repo forall -c "git branch --track master github/master"
$ repo forall -c "git checkout master"

Track and checkout the dev (i.e. Development) branch:

$ repo forall -c "git branch --track dev github/dev"
$ repo forall -c "git checkout dev"

Code, Branch, and Version Management

to be added

Documentation

to be added

Submitting Patches

to be added

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Introduction

Hibari is a production-ready, distributed, key-value, big data
store. In the emerging field of “NOSQL” solutions to today’s
mass-scale data storage challenges, Hibari stands out for several
reasons:

	Hibari is the only open source key-value database to couple Erlang
engineering with innovative chain replication technology. Erlang is
the ideal programming foundation on which to build a robust,
high-performance distributed storage solution. Chain replication
delivers high throughput and availability without sacrificing data
consistency.

	Hibari is the only open source key-value database built to the
exacting standards of the carrier-class telecom sector, and proven
in multi-million user telecom production environments.

	Hibari delivers a distinctive feature matrix that includes:
	Per-table options for RAM+disk-based or disk-only value storage

	Support for per-key expiration times and per-key custom meta-data

	Support for multi-key atomic transactions, within range limits

	A key timestamping mechanism that facilitates “test-and-set” type
operations

	Automatic data rebalancing as the system scales

	Support for live code upgrades

	Multiple client API implementations

This introductory chapter will briefly address the recent emergence of
NOSQL solutions to the challenges posed by the “Big Data” era before
turning to describe more fully the distinctive benefits that Hibari
provides to developers, administrators, and users of data-intensive
applications.

Why NOSQL?

The NOSQL “movement” is, first off, not an outright rejection of
traditional relational database management systems (RDBMS) but rather
a growing recognition that today’s data environment requires a diverse
storage toolset that is “Not Only SQL (NOSQL)”. Relational and NOSQL
data storage solutions should be viewed as complements, with each
approach better suited toward different types of applications and
services.

The main driver of NOSQL has been the proliferation of applications
and services that must store and serve terabytes or petabytes of data,
often while striving to guarantee “always-on” availability and low
latencies for end users. Organizations in many market sectors are
grappling with the advent of Big Data, including but not limited to:

	Web properties – coping with the massive data requirements of
search, e-commerce, social media, and user-generated content.

	Telecoms – managing and analyzing network logs and call data
records for multi-millions of subscribers.

	Utilities – managing and analyzing the enormous data volume
associated with smart grids.

	Financial services – storing and mining customer history data in
order to analyze and model risk.

	Retail analytics – click-stream analysis and micro-targeting.

	Biotech – genome analysis.

Organizations in these and other data-intensive environments have been
challenged to build data storage systems of unprecedented scale. Many
such organizations have found their needs ill-met by traditional data
storage approaches that center around relational database management
systems and specialized high-end hardware. In particular:

	Scaling up a single RDBMS instance doesn’t achieve nearly the
scale required, no matter how high-end the systems or how great the
expenditure.

	Scaling out by sharding the system over multiple RDBMS instances
entails enormous costs and enormous operational complexity, while at
the same time forfeiting much of the power of the relational model.

Wanting Big Data capacity without crippling cost and complexity, some
innovative organizations have sought a better way to scale. At the
same time, with an ever-expanding array of data usage scenarios, it’s
become apparent that not all scenarios require the complex querying
and management functionality associated with an RDBMS. For some
applications and services, SQL-structuring and strict ACID properties
are overkill. Worse, in some environments they’re expensive overkill
that can potentially hamstring service offerings in highly competitive
markets that demand flexibility and responsiveness.

In short, recent years have seen a proliferation of services that
require more data, with less structure.

Not surprisingly, some of the leading web enterprises have been at the
forefront of the NOSQL movement. In particular, Google with its
http://labs.google.com/papers/bigtable.html[BigTable paper] in 2006
and Amazon with its
http://s3.amazonaws.com/AllThingsDistributed/sosp/amazon-dynamo-sosp2007.pdf[Dynamopaper]
in 2007 had a profound effect on the NOSQL market. A number of NOSQL
solutions have drawn inspiration from either BigTable or Dynamo or
both, and in the past couple years several solutions have been
released into the open source community.

While NOSQL data storage solutions vary in their particulars, they
have these basic traits in common:

	A simplified data model. Data models vary across specific solutions,
and sometimes form the basis of a tripartite classification of NOSQL
systems into 1) key-value data stores (such as Dynamo and Hibari);
2) column-oriented data stores (such as BigTable); and 3)
document-oriented data stores (such as CouchDB). All variants,
however, are simpler and more flexible in data model than the
traditional RDBMS. That simplification tends to carry over to client
APIs as well.

	Distribution across multiple nodes based on commodity
PCs. Affordable Big Data capacity is achieved by scaling out across
tens, hundreds, or even thousands of commodity PCs. Data
partitioning schemes coupled with parallel processing of incoming
requests deliver the needed high performance.

	Replication of data objects across multiple nodes, to ensure high
availability in the event of component failures.

For much more on the history, merits, and design issues associated
with NOSQL storage solutions, consult with your favorite search
engine.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Why Hibari?

Hibari was developed internally by Cloudian, Inc. (formerly Gemini
Mobile Technologies), a leading producer of mass-scale messaging and
transaction systems for Tier 1 mobile operators in Asia, Europe, and
the Americas. Cloudian had need for a data store that was efficient,
fast, flexible, and scalable, as well as robust enough to withstand
the rigors of deployment in Tier 1 telecom production environments.
Dissatisfied with the then-available options, Cloudian in 2005 began
work on what came to be Hibari (the name is Japanese for skylark; the
kanji characters stand for “cloud bird”).

With the system having in recent years matured and been proven in
production, Cloudian released Hibari to the open source community in
July 2010 under the Apache 2.0 license. Cloudian regards the open
source community as the best venue in which Hibari can continue to
perfect and grow.

This section describes some of the distinctive features that make
Hibari a very attractive option for businesses and developers seeking
a modern Big Data storage system:

	link:#engineered-erlang[Engineered in Erlang]

	link:#chain-replication[Chain Replication for High Availability and Strong Consistency]

	link:#scalability[Easy, Affordable Scalability]

	link:#high-performance[High Performance, Especially for Reads and Large Values]

	link:#simple-powerful-api[Simple But Powerful Client API]

	link:#production-proven[Production-Proven]

	link:#hibari-benefits-by-user[Hibari Benefits for Developers, System Administrators, and Businesses]

[[engineered-erlang]]

Engineered in Erlang

Erlang is a general purpose programming language and runtime
environment designed specifically to support reliable,
high-performance distributed systems. Originally developed by Ericsson
in the 1980s for building advanced telecom networking systems,
Erlang/OTP (Open Telecom Platform) was open-sourced in 1998. Hibari is
written entirely in Erlang.

Erlang provides a range of benefits that make it the ideal foundation
for a distributed key-value storage solution:

	Concurrency. Erlang has extremely lightweight processes that
communicate by message passing and have no shared memory.
Scheduling, memory management, and other concurrency-related
services are managed by the Erlang VM, placing no requirements for
concurrency on the host operating system.

	Distribution. Erlang is designed specifically for distributed
environments. Passing messages transparently via TCP, Erlang
processes on different nodes communicate with each other in exactly
the same way as do processes on the same node. The simple and
efficient design facilitates massive parallelism and scalability of
the sort required by a high-performance distributed storage
system. With its prowess for concurrency and distributed
processing, it has been suggested that Erlang can be regarded as a
first-of-its-kind
http://www.oreillygmt.eu/open-sourcefree-software/erlang-the-ceos-view/[“application
system”], analogous to an operating system except running across
and coordinating multiple hosts.

	Robustness. Erlang processes are completely independent of each
other, with no data sharing. While functionally isolated, Erlang
processes are able to monitor each other and to detect and respond
to crashed processes, even on remote nodes.

	Portability. The same Erlang VM can run on Linux, Unix, Windows,
Macintosh, or VxWorks. Distributed Erlang processes can seamlessly
communicate with each other regardless of the heterogeneity of
their host operating systems. This OS portability is a valuable
facilitator of storage system elasticity, as system managers may
need to mix and match hosts in response to fluid demand
environments.

	Hot code upgrades. Erlang-based applications like Hibari support
hot code upgrades: upgrades can be applied without shutting down
the system. During the change-over, old and new code can run
simultaneously. This is a key benefit for environments that require
“always-on” availability for end users.

Other features reinforce Erlang’s suitability for reliable distributed
applications, including incremental garbage collection,
single-assignment variables, and robust exception handling.

[[chain-replication]]

Chain Replication for High Availability and Strong Consistency

The Hibari distributed key-value store implements a version of the
chain replication methodology first proposed by
http://www.usenix.org/event/osdi04/tech/full_papers/renesse/renesse.pdf[van
Renesse and Schneider] to achieve redundancy and high availability
without sacrificing data consistency. At a high level, chain
replication in a Hibari storage cluster works as follows:

	Through consistent hashing, the key space is divided across multiple
storage “chains”.

	Each chain is composed of multiple logical storage “bricks”, with
each brick running in its own Erlang VM instance.

	Within each chain, the member bricks have differentiated
roles. Client-requested updates to key-value pairs are written first
to the “head” brick, then automatically replicated downstream to one
or more “middle” bricks and finally to the “tail” brick, which
returns an update acknowledgement to the client. By contrast, read
requests are directed to the tail brick, which returns the response
to the client.

image:images/chain_replication.png[]

While most distributed storage systems are able to guarantee only weak
or eventual data consistency across replicas – placing the burden on
the client application (and the client application developer) to
manage the potential inconsistencies – Hibari with its chain
replication implementation guarantees strong consistency. Data updates
are considered complete, and are acknowledged to clients, only when
they have replicated through the chain to the tail; and read requests
are processed only by the tail. Consequently, after an object update
is acknowledged to a Hibari client, other clients are guaranteed to
see only the newest version of that object. This strong consistency is
valuable in environments where ‘eventual consistency’ is at odds with
the service level expected by end users, or where system designers do
not want to clutter client applications with the logic required to
manage data inconsistency.

The “length” of a chain is configurable and can be based on your
desired degree of replication and redundancy. For example, a chain of
length four would have a head brick, two middle bricks, and a tail
brick; while a three-brick chain would have a head, one middle, and a
tail. A chain can also operate at length two (a head and tail, with no
middle) and even at length one (one brick playing both the head role
and the tail role).

Because chains can operate at any length, and because the system is
able to detect failures within the chain and to adjust member brick
roles accordingly, Hibari delivers high availability as well as strong
data consistency. For example, if in a three-brick chain the head
brick goes down, the middle brick automatically takes over the head
brick role, allowing the chain to continue functioning normally:

image:images/automatic_failover.png[]

If the new head brick failed also, the lone remaining brick would then
play both the head role and the tail role, processing all writes and
reads itself as a single-brick “chain”.

While multiple logical bricks can run on a single physical node, for
high availability it is of course desirable that a particular chain’s
member bricks be deployed on separate machines. If you want to run
multiple bricks per machine and also ensure high availability for each
chain, an attractive deployment option is to “stripe” the chains
across machines:

image:images/load_balanced_chains.png[]

Note also that because head bricks (receiving incoming write requests)
and tail bricks (replying to write requests and processing read
requests) bear more load than do middle bricks, load balancing across
machines can be achieved in part by allocating the different brick
roles evenly, as in the diagram above.

In the event of a physical node failure, bricks within each impacted
chain automatically shift roles, and each chain continues to provide
normal service to clients:

image:images/automatic_failover_2.png[]

For further information about chain replication, fail-over, and
recovery in a Hibari storage system, and for information about
Hibari’s redundantly structured cluster membership application called
the Admin Server, see these sections of the Hibari System
Administrator’s Guide:

	link:hibari-sysadmin-guide.en.html#hibari-architecture[Hibari Architecture]

	link:hibari-sysadmin-guide.en.html#life-of-brick[The Life of a (Logical) Brick]

	link:hibari-sysadmin-guide.en.html#dynamic-cluster-reconfiguration[Dynamic Cluster Reconfiguration]

	link:hibari-sysadmin-guide.en.html#admin-server-app[The Admin Server Application]

[[scalability]]

Easy, Affordable Scalability

Hibari provides Big Data scalability while minimizing the cost and
operational complexity of cluster growth:

	Hibari scales horizontally by the addition of more chains, deployed
on more physical nodes. The total storage and processing capacity of
a Hibari cluster increases linearly as machines are added to the
cluster.

	The system rebalances data storage distribution automatically as
chains are added to (or removed from) the cluster, with no
downtime. You can grow (or shrink) your Hibari storage cluster with
no service interruption.

	Hibari runs on commodity PCs. Further, the system easily
accommodates heterogeneous hardware resources. Bricks within the
storage cluster can have different RAM and disk sizes, and different
CPU speeds. You can tune Hibari’s consistent hash function to
optimize your cluster’s utilization of mixed hardware. Each chain
can be assigned a weighting factor that will increase or decrease
that chain’s portion of the overall key space, relative to other
chains.

In addition to supporting mixed hardware, Erlang-based Hibari can run
on most any OS. With its easy adaptability to disparate hardware and
operating systems, you can scale Hibari incrementally, with whatever
resources you have available. It’s not necessary to buy all your
resources at once, or all of the same kind.

Note

The outer limits of Hibari’s horizontal scalability have not been
definitely determined, but 200 to 250 nodes is a practical boundary
due to the limitations of Erlang’s built-in network distribution
implementation. Also, while Hibari chains could theoretically be
stretched across multiple data centers to provide geographic
redundancy, to date only single data center deployments have been
tested and used in production.

For further information on resizing a Hibari cluster, see
link:hibari-sysadmin-guide.en.html#dynamic-cluster-reconfiguration[Dynamic
Cluster Reconfiguration] in the Hibari System Administrator’s Guide.

[[high-performance]]

High Performance, Especially for Reads and Large Values

Several features work in combination to drive high performance in a
Hibari storage cluster, even at Big Data scale:

	The Erlang technology that underlies Hibari was specifically
designed for and excels at distributed parallel processing.

	Hibari’s implementation of consistent hashing and chain replication
partitions the key-space across multiple chains, enabling parallel
simultaneous processing of requests incoming to individual
chains. The distribution of data across chains is tunable to allow
optimal utilization of heterogeneous hardware resources.

	Hibari’s chain replication implementation further aids performance
by assigning storage bricks differentiated processing roles as head,
middle, or tail. This division of labor particularly benefits read
performance, as read requests are processed by “tail” bricks that do
not bear the load of initial processing of write requests (since
that work is done by “head” bricks).

	Hibari supports a number of performance-tuning options on a
per-table basis. For example, while some distributed KVDBs support
only disk-based storage or only RAM-based storage of value blobs,
Hibari lets you choose RAM+disk-based or disk-only storage on a
per-table basis, depending on your application needs. Whichever
storage option you choose, all data changes are logged to disk to
ensure data durability in the event of power failures. A batch
commit technique is used to minimize disk I/O.

Leveraging this feature set, Hibari is able to deliver scalable high
performance that is competitive with leading open source NOSQL storage
systems, while also providing the data durability and strong
consistency that many systems lack. Hibari’s performance relative to
other NOSQL systems is particularly strong for reads and for large
value (> 200KB) operations. Hibari’s consistently high performance
even for large values distinguishes the system from solutions that are
tailored toward small value operations.

As one example of real-world performance, in a multi-million user
webmail deployment equipped with traditional HDDs (non SSDs), Hibari
is processing about 2,200 transactions per second, with read latencies
averaging between 1 and 20 milliseconds and write latencies averaging
between 20 and 80 milliseconds.

[[simple-powerful-api]]

Simple But Powerful Client API

As a key-value store, Hibari’s core data model and client API model
are simple by design: blob-based key-value pairs can be inserted,
retrieved, and deleted from lexicographically sorted tables. While
Hibari thus provides the flexibility and scalability associated with
key-value stores, the system also provides distinctive features that
enhance the power of client applications and developers:

	Clients can optionally assign per-object expiration times.

	Clients can optionally assign per-object custom flags. This
flexible, custom meta-data can be updated with or without updating
the associated value blob, and can be retrieved with or without the
value blob.

	Objects are automatically timestamped each time they are
updated. This timestamping mechanism facilitates “test-and-set” type
operations: clients can specify that a requested operation be
performed only if the target key’s timestamp matches the client’s
expectations.

	Within key-prefix range limits (specifically, within individual
chains but not across chains), Hibari’s client API supports atomic
transactions. This support for “micro-transactions” sets Hibari
apart from other open source KVDBs and can greatly simplify the
creation of robust client applications.

Hibari supports multiple client API implementations including:

	Native Erlang

	Universal Binary Format (UBF)

	Thrift

	Amazon S3

	JSON-RPC

You can develop Hibari client applications in a variety of languages
including Java, C/C++, Python, Ruby, and Erlang.

For further information about Hibari’s client API, see
link:#client-api-erlang[Client API: Native Erlang] and the subsequent
client API chapters in this guide.

Note

The Hibari source distribution does not include Amazon S3 and
JSON-RPC. They are separate external projects.

[[production-proven]]

Production-Proven

While initial development work on Hibari was geared generally toward
the data storage demands of the Tier 1 telecom sector, as the system
evolved it needed to meet the requirements of a particular major Asian
carrier that wished to launch a GB webmail service. This customer’s
requirements for Hibari included the following:

	Several million users from the start.

	Several billion stored messages within a few months of launch.

	Hundreds of TB storage capacity.

	Elasticity to support continual growth.

	Low system costs, particularly since the service would employ the
“freemium” model.

	Individual messages could range in size from a few bytes to many MB
with attachments.

	Support for per-object meta-data required.

	Strong consistency required, for interactive sessions.

	Data durability required – loss of messages or meta-data unacceptable.

	High availability – an “always on”, branded service.

	Low latency, with < 1 second response times for end user transactions.

Hibari was built to meet these rigorous requirements, was hardened
through extensive testing and trials, and went live in support of this
large-scale webmail system at the beginning of 2010. The system now
stores billions of messages on behalf of millions of end users, while
meeting customer requirements for availability, latency, consistency,
durability, and affordability.

Coinciding with Hibari’s development and fine tuning for this GB
webmail service, the system was also deployed as a storage solution
for two major Asian carriers’ mobile social networking services. In
this context, Hibari stores user profile data as well as digital goods
of varying types and sizes.

[[hibari-benefits-by-user]]

Hibari Benefits for Developers, System Administrators, and Businesses

For application developers, Hibari offers a distinctive set of
benefits not often found in distributed key-value stores:

	Strong data consistency guarantees that relieve client applications
of the burden of managing potential inconsistencies.

	Micro-transaction support that simplifies the creation of powerful
applications.

	Per-object custom flags that facilitate flexible, service-specific
application design.

	Support for a variety of API implementations and development
languages.

For system administrators, Hibari provides valuable operational
automations that simplify data management in a dynamic storage
environment:

	Automatic data replication.

	Automatic failover when a node goes down.

	Automatic repair when a failed node comes back up.

	Automatic rebalancing of data as a cluster grows or shrinks.

For businesses as a whole, Hibari offers affordable Big Data
scalability while delivering the high availability and low latencies
that service users demand. Hibari is an appropriate storage solution
for a range of data-intensive service scenarios including but not
limited to large-scale messaging, social media, and archiving. Hibari
offers particular value in environments that require strong data
consistency and/or high performance across a variety of object types
and sizes.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Getting Started

This section covers the following topics to help you get up and
running with Hibari:

	link:#system-requirements[System Requirements]

	link:#required-software[Required Third Party Software]

	link:#download-hibari[Downloading Hibari]

	link:#installing-single-node[Installing a Single-Node Hibari System]

	link:#starting-single-node[Starting and Stopping a Single-Node Hibari System]

	link:#installing-multi-node[Installing a Multi-Node Hibari Cluster]

	link:#starting-multi-node[Starting and Stopping a Multi-Node Hibari Cluster]

	link:#creating-tables[Creating New Tables]

[[system-requirements]]

System Requirements

Hibari will run on any OS that the Erlang VM supports, which includes
most Unix and Unix-like systems, Windows, and Mac OS X. See
Implementation and Ports of Erlang [http://www.erlang.org/faq/implementations.htm]
from the official Erlang documentation for further
information.

For guidance on hardware requirements in a production environment, see
link:hibari-sysadmin-guide.en.html#brick-hardware[Notes on Brick
Hardware] in the Hibari System Administrator’s Guide.

[[required-software]]

Required Third-Party Software

Hibari’s requirements for third party software depend on whether
you’re doing a single-node installation or a multi-node installation.

Required Software for a Single-Node Installation:

The node on which you plan to install Hibari must have the following software:

	OpenSSL - http://www.openssl.org/
	Required for Erlang’s “crypto” module

Required Software for a Multi-Node Installation:

When you install Hibari on multiple nodes you will use an installer
tool that simplifies the cluster set-up process. When you use this
tool you will identify the hosts on which you want Hibari to be
installed, and the tool will manage the installation of Hibari onto
those target hosts. You can run the tool itself from one of your
target Hibari nodes or from a different machine. There are distinct
requirements for third party software on the “installer node” (the
machine from which you run the installer tool) and on the Hibari nodes
(the machines on which Hibari will be installed and run.)

Installer Node Required Software

The installer node must have the software listed below. If you are
missing any of these items, you can use the provided links for
downloads and installation instructions.

	Bash - http://www.gnu.org/software/bash/

	Expect - http://www.nist.gov/el/msid/expect.cfm

	Perl - http://www.perl.org/

	SSH (client) - http://www.openssh.com/

	Git - http://git-scm.com/

	Must be version 1.5.4 or newer

	If you haven’t yet done so, please configure your email address
and name for Git:

$ git config --global user.email "you@example.com"
$ git config --global user.name "Your Name"

	If you haven’t yet done so, you must sign up for a GitHub account -
https://github.com/

There are currently no known version requirements for Bash, Expect,
Perl, or SSH.

Hibari Nodes Required Software

The nodes on which you plan to install Hibari must have the software
listed below.

	SSH (server) - http://www.openssh.com/

	OpenSSL - http://www.openssl.org/
	Required for Erlang’s “crypto” module

[[download-hibari]]

Downloading Hibari

Hibari is not yet available as a pre-built release. In the meanwhile,
you can build Hibari from source. Follow the instructions in
<<HibariBuildingSource>>, and then return to this section to continue
the set-up process.

When you build Hibari your output is two files that you will later use
in the set-up process:

	A tarball package hibari-X.Y.Z-DIST-ARCH-WORDSIZE.tgz

	An md5sum file hibari-X.Y.Z-DIST-ARCH-WORDSIZE-md5sum.txt

X.Y.Z is the release version, DIST is the release distribution,
ARCH is the release architecture, and WORDSIZE is the release
wordsize.

[[installing-single-node]]

Installing a Single-Node Hibari System

A single-node Hibari system will not provide data replication and
redundancy in the way that a multi-node Hibari cluster will. However,
you may wish to deploy a simple single-node Hibari system for testing
and development purposes.

	Create a directory for running Hibari:

$ mkdir running-directory

	Untar the Hibari tarball package that you created when you built
Hibari from source:

$ tar -C running-directory -xvf hibari-X.Y.Z-DIST-ARCH-WORDSIZE.tgz

Important

On your Hibari node, in the system’s /etc/sysctl.conf file,
set vm.swappiness=1. Swappiness is not desirable for an Erlang VM.

[[starting-single-node]]

Starting and Stopping Hibari on a Single Node

Starting and Bootstrapping Hibari

	Start Hibari:

$ running-directory/hibari/bin/hibari start

	If this is the first time you’ve started Hibari, bootstrap the system:

$ running-directory/hibari/bin/hibari-admin bootstrap

The Hibari bootstrap process starts Hibari’s Admin Server on the
single node and creates a single table “tab1” serving as Hibari’s
default table. For information on creating additional tables, see
link:#creating-tables[Creating New Tables].

Verifying Hibari

Do these quick checks to verify that your single-node Hibari system is
up and running.

	Confirm that you can open the “Hibari Web Administration” page:

$ your-favorite-browser http://127.0.0.1:23080

	Confirm that you can successfully ping the Hibari node:

$ running-directory/hibari/bin/hibari ping

IMPORTANT: A single-node Hibari system is hard-coded to listen on the
localhost address 127.0.0.1. Consequently the Hibari node is reachable
only from the node itself.

Stopping Hibari

To stop Hibari:

$ running-directory/hibari/bin/hibari stop

[[installing-multi-node]]

Installing a Multi-Node Hibari Cluster

Before you install Hibari on to the target nodes you must complete
these preparation steps:

	Set up required user privileges on the installer node and on the
target Hibari nodes.

	Download the Cluster installer tool.

	Configure the Cluster installer tool.

Setting Up Your User Privileges

The system user ID that you use to perform the installation must be
different than the Hibari runtime user. Your installing user account
($USER) must be set up as follows:

	$USER must exist on the installer node and also on the target Hibari
nodes.

	$USER on the installer node must have SSH private/public keys, with
the SSH agent set up to enable password-less SSH login.

	$USER account must be accessible with password-less SSH login on the
target Hibari nodes.

	$USER must have password-less sudo access on the target Hibari
nodes.

If your installing user account does not currently have the above
privileges, follow these steps:

	As the root user, add your installing user ($USER) to the installer
node. Then on each of the Hibari nodes, add your installing user and
grant your user password-less sudo access:

$ useradd $USER
$ passwd $USER
$ visudo
append the following line and save it
$USER ALL=(ALL) NOPASSWD: ALL

Note

If you get a “sudo: sorry, you must have a tty to run sudo” error
while testing sudo, try commenting out following line inside of the
/etc/sudoers file:

$ visudo
Defaults requiretty

	On the installer node, create a new SSH private/public key for your
installing user:

$ ssh-keygen
enter your password for the private key
$ eval `ssh-agent`
$ ssh-add ~/.ssh/id_rsa
re-enter your password for the private key

	On each of the Hibari nodes:

	Append an entry for the installer node to the ~/.ssh/known_hosts
file.

	Append an entry for your public SSH key to the
~/.ssh/authorized_keys file.

In the example below, the target Hibari nodes are dev1, dev2, and
dev3:

$ ssh-copy-id -i ~/.ssh/id_rsa.pub $USER@dev1
$ ssh-copy-id -i ~/.ssh/id_rsa.pub $USER@dev2
$ ssh-copy-id -i ~/.ssh/id_rsa.pub $USER@dev3

Note

If your installer node will be one of the Hibari cluster nodes,
make sure that you ssh-copy-id to the installer node also.

	Confirm that password-less SSH access to the each of the Hibari
nodes works as expected:

$ ssh $USER@dev1
$ ssh $USER@dev2
$ ssh $USER@dev3

Tip

If you need more help with SSH set-up, check
http://inside.mines.edu/~gmurray/HowTo/sshNotes.html.

[[download-cluster]]

Downloading the Cluster Installer Tool

“Cluster” is a simple tool for installing, configuring, and
bootstrapping a cluster of Hibari nodes. The tool is not part of the
Hibari package itself, but is available from GitHub.

Note

The Cluster tool should meet the needs of most users. However,
this tool’s “target node” recipe is currently Linux-centric
(e.g. useradd, userdel, ...). Patches and contributions for other OS
and platforms are welcome. For non-Linux deployments, the Cluster
tool is rather simple so installation can be done manually by
following the tool’s recipe.

	Create a working directory into which you will download the Cluster
installer tool:

$ mkdir working-directory

	Download the Cluster tool’s Git repository from GitHub:

$ cd working-directory
$ git clone git://github.com/hibari/clus.git

The download creates a sub-directory clus under which the installer
tool and various supporting files are stored.

[[config-cluster]]

Configuring the Cluster Installer Tool

The Cluster tool requires some basic configuration information that
indicates how you want your Hibari cluster to be set up. You will
create a simple text file that specifies your desired configuration,
and then later use the file as input when you run the Cluster tool.

It’s simplest to create the file in the same working directory in
which you downloaded the cluster tool. You can give the file any name
that you want; for purposes of these instructions we will use the file
name hibari.config.

Below is a sample hibari.config file. The file that you create must
include all of these parameters, and the values must be formatted in
the same way as in this example (with parentheses and quotation marks
as shown). Parameter descriptions follow the example file.

ADMIN_NODES=(dev1 dev2 dev3)
BRICK_NODES=(dev1 dev2 dev3)
BRICKS_PER_CHAIN=2

ALL_NODES=(dev1 dev2 dev3)
ALL_NETA_ADDRS=("10.181.165.230" "10.181.165.231" "10.181.165.232")
ALL_NETB_ADDRS=("10.181.165.230" "10.181.165.231" "10.181.165.232")
ALL_NETA_BCAST="10.181.165.255"
ALL_NETB_BCAST="10.181.165.255"
ALL_NETA_TIEBREAKER="10.181.165.1"

ALL_HEART_UDP_PORT="63099"
ALL_HEART_XMIT_UDP_PORT="63100"

[[eligible-admin-nodes]]

	ADMIN_NODES
	Host names of the nodes that will be eligible to run the Hibari
Admin Server. For complete information on the Admin Server, see
link:hibari-sysadmin-guide.en.html#admin-server-app[The Admin
Server Application] in the Hibari System Administrator’s Guide.

	BRICK_NODES
	Host names of the nodes that will serve as Hibari storage
bricks. Note that in the sample configuration file above there are
three storage brick nodes (dev1, dev2, and dev3), and these three
nodes are each eligible to run the Admin Server.

	BRICKS_PER_CHAIN
	Number of bricks per replication chain. For example, with two
bricks per chain there will be two copies of the data stored in
the chain (one copy on each brick); with three bricks per chain
there will be three copies, and so on. For an overview of chain
replication, see link:#chain-replication[Chain Replication for
High Availability and Strong Consistency] in this document. For
chain replication detail, see the Hibari System Administrator’s
Guide.

	ALL_NODES
	This list of all Hibari nodes is the union of ADMIN_NODES and
BRICK_NODES.

	ALL_NETA_ADDRS
	As described in
link:hibari-sysadmin-guide.en.html#partition-detector[The
Partition Detector Application] in the Hibari System
Administrator’s guide, the nodes in a multi-node Hibari cluster
should be connected by two networks, Network A and Network B, in
order to detect and manage network partitions. The
ALL_NETA_ADDRS parameter specifies the IP addresses of each
Hibari node within Network A, which is the network through which
data replication and other Erlang communications will take
place. The list of the IP addresses should correspond in order to
host names you listed in the ALL_NODES setting.

	ALL_NETB_ADDRS
	IP addresses of each Hibari node within Network B. Network B is
used only for heartbeat broadcasts that help to detect network
partitions. The list of the IP addresses should correspond in
order to host names you listed in the ALL_NODES setting.

	ALL_NETA_BCAST
	IP broadcast address for Network A.

	ALL_NETB_BCAST
	IP broadcast address for Network B.

	ALL_NETA_TIEBREAKER
	Within Network A, the IP address for the network monitoring
application to use as a “tiebreaker” in the event of a
partition. If the network monitoring application on a Hibari node
determines that Network A is partitioned and Network B is not
partitioned, then if the Network A tiebreaker IP address responds
to a ping, then the local node is on the “correct” side of the
partition. Ideally the tiebreaker should be the address of the
Layer 2 switch or Layer 3 router that all Erlang network
distribution communications flow through.

	ALL_HEART_UDP_PORT
	UDP port for heartbeat listener.

	ALL_HEART_XMIT_UDP_PORT
	UDP port for heartbeat transmitter.

For more detail on network monitoring configuration settings, see the
partition-detector’s OTP application source file
(https://github.com/hibari/partition-detector/raw/master/src/partition_detector.app.src).

CAUTION: In a production setting, Network A and Network B should be
physically different networks and network interfaces. However, for
testing and development purposes the same physical network can be used
for Network A and Network B (as in the sample configuration file
above).

As final configuration steps, on each Hibari node:

	Make sure that the /etc/hosts file has entries for all Hibari nodes
in the cluster. For example:

10.181.165.230 dev1.your-domain.com dev1
10.181.165.231 dev2.your-domain.com dev2
10.181.165.232 dev3.your-domain.com dev3

	In the system’s /etc/sysctl.conf file, set vm.swappiness=1. Swappiness
is not desirable for an Erlang VM.

Installing Hibari

From your installer node, logged in as the installer user, take these
steps to create your Hibari cluster:

	In the working directory in which you
link:#download-cluster[downloaded the Cluster tool] and
link:#config-cluster[created your cluster configuration file], place
a copy of the Hibari tarball package and md5sum file:

$ cd working-directory
$ ls -1
clus
hibari-X.Y.Z-DIST-ARCH-WORDSIZE-md5sum.txt
hibari-X.Y.Z-DIST-ARCH-WORDSIZE.tgz
hibari.config
$

	Create the “hibari” user on all Hibari nodes:

$ for i in dev1 dev2 dev3 ; do ./clus/priv/clus.sh -f init hibari $i ; done
hibari@dev1
hibari@dev2
hibari@dev3

Note

If the “hibari” user already exists on the target nodes, the -f
option will forcefully delete and then re-create the “hibari” user.

	Install the Hibari package on all Hibari nodes, via the newly
created “hibari” user:

$./clus/priv/clus-hibari.sh -f init hibari hibari.config hibari-X.Y.Z-DIST-ARCH-WORDSIZE.tgz
hibari@dev1
hibari@dev2
hibari@dev3

Note

By default the Cluster tool installs Hibari into
/usr/local/var/lib on the target nodes. If you prefer a different
location, before doing the install open the clus.sh script (in your
working directory, under /clus/priv/) and edit the CT_HOMEBASEDIR
variable.

[[starting-multi-node]]

Starting and Stopping a Multi-Node Hibari Cluster

You can use the Cluster installer tool to start and stop your
multi-node Hibari cluster, working from the same node from which you
managed the installation process. Note that in each of the Hibari
commands in this section you’ll be referencing the name of the
link:#config-cluster[Cluster tool configuration file] that you created
during the installation procedure.

Starting and Bootstrapping the Hibari Cluster

	Change to the working directory in which you downloaded the Cluster
tool, then start Hibari on all Hibari nodes via the “hibari” user:

$ cd working-directory
$./clus/priv/clus-hibari.sh -f start hibari hibari.config
hibari@dev1
hibari@dev2
hibari@dev3

	If this is the first time you’ve started Hibari, bootstrap the
system via the “hibari” user:

$./clus/priv/clus-hibari.sh -f bootstrap hibari hibari.config
hibari@dev1 => hibari@dev1 hibari@dev2 hibari@dev3

The Hibari bootstrap process starts Hibari’s Admin Server on the first
link:#eligible-admin-nodes[eligible admin node] and creates a single
table “tab1” serving as Hibari’s default table. For information about
creating additional tables, see link:#creating-tables[Creating New Tables].

Note

If bootstrapping fails due to “another_admin_server_running”
error, please stop the other Hibari cluster(s) running on the network;
or reconfigure the Cluster tool to assign
link:#eligible-admin-nodes[Hibari heartbeat listener ports] that are
not in use by another Hibari cluster or other applications and then
repeat the cluster installation procedure.

Verifying the Hibari Cluster

Do these simple checks to verify that Hibari is up and running.

	Confirm that you can open the “Hibari Web Administration” page:

$ your-favorite-browser http://dev1:23080

	Confirm that you can successfully ping each of your Hibari nodes:

$./clus/priv/clus-hibari.sh -f ping hibari hibari.config
hibari@dev1 ... pong
hibari@dev2 ... pong
hibari@dev3 ... pong

Stopping the Hibari Cluster

Stop Hibari on all Hibari nodes via the “hibari” user:

$ cd working-directory
$./clus/priv/clus-hibari.sh -f stop hibari hibari.config
ok
ok
ok
hibari@dev1
hibari@dev2
hibari@dev3

[[creating-tables]]

Creating New Tables

The simplest way to create a new table is via the Admin Server’s
GUI. Open http://localhost:23080/ and click the “Add a table” link.
In addition to the GUI, the hibari-admin tool can also be used to
create a new table. See the hibari-admin tool for usage details.

Note

For information about creating tables using the administrative
API, see the Hibari System Administrator’s Guide.

When adding a table through the GUI, you have these table
configuration options:

	Local
	Boolean. If true, all bricks for storing the new table’s data will
be created on the local node, i.e. the node that’s running the
Admin Server. If false, then the “NodeList” field is used to
specify which cluster nodes the new bricks should use.

	BigData
	Boolean. If true, value blobs will be stored on disk.

	DiskLogging
	Boolean. If true, all updates will be written to the write-ahead
log for persistence. If false, bricks will run faster but at the
expense of data loss in a cluster-wide power failure.

	SyncWrites
	Boolean. If true, all writes to the write-ahead log will be
flushed to stable storage via the fsync(2) system call. If
false, bricks will run faster but at the expense of data loss in a
cluster-wide power failure.

	VarPrefix
	Boolean. If true, then a variable-length prefix of the key will be
used as input for the consistent hashing function. If false, the
entire key will be used.

Many applications can benefit from using a variable-length or
fixed-length prefix hashing scheme. As an example, consider an
application that maintains state for various users. The app wishes to
use micro-transactions to update various keys (in the same table)
related to that user. The table can be created to use
VarPrefix=true, together with VarPrefixSeparator=47 (ASCII 47 is
the forward slash character) and VarPrefixNumSeparator=2, to create
a hashing scheme that will guarantee that keys /FooUser/summary and
/FooUser/thing1 and /FooUser/thing9 are all stored by the same
chain.

Note

The HTTP interface for creating tables does not expose the
fixed-length key prefix scheme. The Erlang API must be used in this
case.

	VarPrefixSeparator
	Integer. Define the character used for variable-length key prefix
calculation. Note that the default value of ASCII 47 (the “/”
character), or any other character, does not imply any UNIX/POSIX
style file or directory semantics.

	VarPrefixNumSeparators
	Integer. Define the number of VarPrefixSeparator bytes, and all
bytes in between, used for consistent hashing. If
VarPrefixSeparator=47 and VarPrefixNumSeparators=3, then for a
key such as /foo/bar/baz, the prefix used for consistent hashing
will be /foo/bar/.

	Bricks
	Integer. If Local=true (see above), then this integer defines
the total number of logical bricks that will be created on the
local node. This value is ignored if Local=false.

	BPC
	Integer. Define the number of bricks per chain.

The algorithm used for creating chain -> brick mapping is based on a
“striping” principle: enough chains are laid across bricks in a
stripe-wise manner so that all nodes (aka physical bricks) will have
the same number of logical bricks in head, middle, and tail roles.
See the example in the Hibari System Administrator’s Guide of
link:hibari-sysadmin-guide.en.html#3-chains-striped-across-3-bricks[3
chains striped across three nodes].

The Erlang API must be used to create tables with other chain layout
patterns.

	NodeList
	Comma-separated string. If Local=false, specify the list of
nodes that will run logical bricks for the new table. Each node
in the comma-separated list should take the form
NodeName@HostName. For example, use hibari1@machine-a,
hibari1@machine-b, hibari1@machine-c to specify three nodes.

	NumNodesPerBlock
	Integer. If Local=false, then this integer will affect the
striping behavior of the default chain striping algorithm. This
value must be zero (i.e. this parameter is ignored) or a multiple
of the BPC parameter.

For example, if NodeList contains nodes A, B, C, D, E, and F, then
the following striping patterns would be used:

	NumNodesPerBlock=0 would stripe across all 6 nodes for 6
chains total.

	NumNodesPerBlock=2 and BPC=2 would stripe 2 chains across
nodes A & B, 2 chains across C & D, and 2 chains across E & F.

	NumNodesPerBlock=3 and BPC=3 would stripe 3 chains across
nodes A & B & C and 3 chains across D & E & F.

	BlockMultFactor
	Integer. If Local=false, then this integer will affect the
striping behavior of the default chain striping algorithm. This
value must be zero (i.e. this parameter is ignored) or greater
than zero.

For example, if NodeList contains nodes A, B, C, D, E, and F, then
the following striping patterns would be used:

	NumNodesPerBlock=0 and BlockMultFactor=0 would stripe
across all 6 nodes for 6 chains total.

	NumNodesPerBlock=2 and BlockMultFactor=5 and BPC=2 would
stripe 2*5=10 chains across nodes A & B, 2*5=10 chains across C
& D, and 2*5=10 chains across E & F, for a total of 30 chains.

	NumNodesPerBlock=3 and BlockMultFactor=4 and BPC=3 would
stripe 3*4=12 chains across nodes A & B & C and 3*4=12 chains
across D & E & F, for a total of 24 chains.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

The Hibari Data Model

If a Hibari table were represented within an SQL database, it would
look something like this:

[[sql-definition-hibari]]

include::texts-src/hibari-sql-definition.txt[]

Hibari table names use the Erlang data type ``atom’‘. The types of
all key-related attributes are presented below.

include::texts-src/hibari-key-value-attrs.txt[]

include::texts-src/hibari-key-value-attrs-expl.txt[]

The practical constraints on maximum value blob size are affected by
total blob size and frequency of large blob access. For example,
storing an occasional 64MB value blob is different than a 100% write
workload of 100% 64MB value blobs. The Hibari client API does not
have a method to update or fetch less than the entire value blob, so a
brick can be blocked for many seconds if it tried to operate on (for
example) even a single 4GB blob. In addition, other processes can be
blocked by ‘busy_dist_port’ events while processing big value blobs.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hibari Client API Overview

As a key-value database, Hibari provides a simple client API with
primitive operations for inserting, retrieving, and deleting data.
Within certain restrictions, the API also supports compound operations
that optionally can be executed as atomic transactions.

Supported Operations

Hibari’s client API supports the operations listed below.

Data Insertion

	
brick_simple:add(Table, Key, Value[, ExpTime][, Flags][, Timeout])

	Adds a key-value pair that does not yet exist, along with optional
flags.

Successful adding of a new key-value pair:

> brick_simple:add(tab1, <<"foo">>, <<"Hello, world!">>).
{ok,1271542959131192}

Failed attempt to add a key that already exists:

> brick_simple:add(tab1, <<"foo">>, <<"Goodbye, world!">>).
{key_exists,1271542959131192}

	
brick_simple:replace(Table, Key, Value[, ExpTime][, Flags][, Timeout])

	Assigns a new value and/or new flags to a key that already exists.

	
brick_simple:set(Table, Key, Value[, ExpTime][, Flags][, Timeout])

	Sets a key-value pair and optional flags regardless of whether the
key yet exists.

	
brick_simple:rename(Table, Key, NewKey[, ExpTime][, Flags][, Timeout])

	Renames a key that already exists.

Successful renaming of a key-value pair:

> brick_simple:rename(tab1, <<"my/foo">>, <<"my/bar">>).
{ok,1271543165272987}

rename operation fails if key and newkey do not share a
common key prefix:

> brick_simple:rename(tab1, <<"my/foo">>, <<"her/foo">>).
...

See TODO (Creating New Table - VarPrefix) for more details.

Data Retrieval

	Retrieve a key and optionally its associated value and flags:
	link:#brick-simple-get[brick_simple:get/4]

	Retrieve multiple lexicographically contiguous keys and optionally
their associated values and flags:
	link:#brick-simple-get-many[brick_simple:get_many/5]

Data Deletion

	Delete a key-value pair and associated flags:
	link:#brick-simple-delete[brick_simple:delete/4]

Compound Operations

	Execute a specified list of operations, optionally as an atomic
transaction (micro-transaction):
	link:#brick-simple-do[brick_simple:do/4]

Fold Operations

	Implement a fold operation across all keys in a table:
	link:#brick-simple-fold-table[brick_simple:fold_table/7]

	Implement a fold operation across all keys having a specified
prefix:
	link:#brick-simple-fold-key[brick_simple:fold_key_prefix/9]

Note

Fold operations are performed at client side, not server side.

Check and Swap (CAS)

If desired, clients can apply a “check and swap” (or “test and set”)
logic to data insertion, retrieval, and deletion operations so that
the operation will be executed only if the target key has the exact
timestamp specified in the request.

Micro-Transaction

TODO

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Client API: Native Erlang

Data Insertion

	Add a key-value pair that does not yet exist, along with optional
flags:

	link:#brick-simple-add[brick_simple:add/6]

	Assign a new value and/or new flags to a key that already exists:

	link:#brick-simple-replace[brick_simple:replace/6]

	Rename a key that already exists:

	link:#brick-simple-rename[brick_simple:rename/6]

	Set a key-value pair and optional flags regardless of whether the
key yet exists:

	link:#brick-simple-set[brick_simple:set/6]

Data Retrieval

	Retrieve a key and optionally its associated value and flags:
	link:#brick-simple-get[brick_simple:get/4]

	Retrieve multiple lexicographically contiguous keys and optionally
their associated values and flags:
	link:#brick-simple-get-many[brick_simple:get_many/5]

Data Deletion

	Delete a key-value pair and associated flags:
	link:#brick-simple-delete[brick_simple:delete/4]

Compound Operations

	Execute a specified list of operations, optionally as an atomic
transaction (micro-transaction):
	link:#brick-simple-do[brick_simple:do/4]

If desired, clients can apply a “test ‘n set” logic to data insertion,
retrieval, and deletion operations so that the operation will be
executed only if the target key has the exact timestamp specified in
the request.

Fold Operations

	Implement a fold operation across all keys in a table:
	link:#brick-simple-fold-table[brick_simple:fold_table/7]

	Implement a fold operation across all keys having a specified
prefix:
	link:#brick-simple-fold-key[brick_simple:fold_key_prefix/9]

Note

Fold operations are performed at client side, not server side.

brick_simple:add/6

Adds Key and Value pair (and optional Flags) to the table
Table if the key does not already exist. The operation will fail
if Key already exists.

	
brick_simple:add(Table, Key, Value)

	

	
brick_simple:add(Table, Key, Value, Flags)

	

	
brick_simple:add(Table, Key, Value, Timeout)

	

	
brick_simple:add(Table, Key, Value, ExpTime, Flags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table to which to add the key-value pair

	-type table() :: atom()

	Key (key()) – Key to add to the table, in association with a paired value

	-type key() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

Note

While the Key may be specified as either iolist() or
binary(), it will be converted into binary before operation
execution. The same is true of Value.

	Parameters:	
	Value (val()) – Value to associate with the key

	-type val() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

	ExpTime (exp_time()) –
	Time at which the key will expire, expressed as a Unix
time_t().

	Optional; defaults to 0 (no expiration).

	-type exp_time() :: time_t()

	-type time_t() :: integer()

	Flags (flags_list()) –
	List of operational flags to apply to the add operation,
and/or custom property flags to associate with the key-value
pair in the database. Heavy use of custom property flags is
discouraged due to RAM-based storage

	Optional; defaults to empty list

	-type flags_list() :: [do_op_flag() | property()]

	-type do_op_flag() :: 'value_in_ram'
	Store the value blob in RAM, overriding the default storage
location of the brick
Note

'value_in_ram' flag have not been extensively tested

	-type property() :: atom() | {term(), term()}

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	{'ok', timestamp()}

Error returns

	Return type:	{'key_exists', timestamp()}
	The operation failed because the key already exists.

	-type timestamp() :: integer()

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_op_flag() was
found in the Flags argument.

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key is currently length zero and therefore unavailable.

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain.

	-type node() :: atom()

Examples

Successful adding of a new key-value pair:

> brick_simple:add(tab1, <<"foo">>, <<"Hello, world!">>).
{ok,1271542959131192}

Failed attempt to add a key that already exists:

> brick_simple:add(tab1, <<"foo">>, <<"Goodbye, world!">>).
{key_exists,1271542959131192}

Successful adding of a new key-value pair, with value to be stored in
RAM regardless of brick’s default storage setting:

> brick_simple:add(tab1, "foo1", "this is value1", ['value_in_ram']).
{ok,1271542959131192}

Successful adding of a new key-value pair, using a non-default
operation timeout:

> brick_simple:add(tab1, "foo2", "this is value2", 20000).
{ok,1271542959131192}

brick_simple:replace/6

Replace Key and Value pair (and optional Flags) in the
table Table if the key already exists. The operation will fail if
Key does not already exist

	
brick_simple:replace(Table, Key, Value)

	

	
brick_simple:replace(Table, Key, Value, Flags)

	

	
brick_simple:replace(Table, Key, Value, Timeout)

	

	
brick_simple:replace(Table, Key, Value, ExpTime, Flags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table in which to replace the key-value pair.

	-type table() :: atom()

	Key – Key to replace in the table, in association with a new paired
value

	-type key() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

Note

While the Key may be specified as either iolist() or
binary(), it will be converted into binary before operation
execution. The same is true of Value.

	Parameters:	
	Value (val()) – Value to associate with the key

	-type val() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

	ExpTime (exp_time()) –
	Time at which the key will expire, expressed as a Unix
time_t().

	Optional; defaults to 0 (no expiration).

	-type exp_time() :: time_t()

	-type time_t() :: integer()

	Flags (flags_list()) –
	List of operational flags to apply to the replace
operation, and/or custom property flags to associate with the
key-value pair in the database. Heavy use of custom property
flags is discouraged due to RAM-based storage

	Optional; defaults to empty list

	-type flags_list() :: [do_op_flag() | property()]

	-type do_op_flag() :: {'testset', timestamp()} | 'value_in_ram'
{'exp_time_directive', 'keep' | 'replace'} |
{'attrib_directive', 'keep' | 'replace'}

	-type timestamp() = integer()

	-type property() :: atom() | {term(), term()}

	Operational flag usage
	{'testset', timestamp()}
	Fail the operation if the existing key’s timestamp is not
exactly equal to timestamp(). If used inside a
link:#brick-simple-do[micro-transaction], abort the
transaction if the key’s timestamp is not exactly equal to
timestamp()

	{'exp_time_directive', 'keep' | 'replace'}
	Default to 'replace'

	Specifies whether the ExpTime is kept from the old key
value pair or replaced with the ExpTime provided in
the replace operation

	{'attrib_directive', 'keep' | 'replace'}
	Default to 'replace'

	Specifies whether the custom properties are kept from the
old key value pair or replaced with the custom properties
provided in the replace operation

	If kept, the custom properties remain unchanged. If you
specify custom properties explicitly in the replace
operation, Hibari adds them to the resulting key value
pair

	If replaced, all original custom properties are deleted,
and then Hibari adds the custom properties in the replace
operation to the resulting key value pair

	'value_in_ram'
	Store the value blob in RAM, overriding the default
storage location of the brick

Note

'value_in_ram' flag have not been extensively tested

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	{'ok', timestamp()}

Error returns

	Return type:	'key_not_exists'
	The operation failed because the key does not exist

	-type timestamp() :: integer()

	Return type:	{'ts_error', timestamp()}
	The operation failed because the {'testset', timestamp()}
flag was used and there was a timestamp mismatch. The
timestamp() in the return is the current value of the
existing key’s timestamp.

	timestamp() = integer()

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_op_flag() was
found in the Flags argument.

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key is currently length zero and therefore unavailable.

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain.

	-type node() :: atom()

Examples

Successful replacement of a key-value pair:

> brick_simple:replace(tab1, <<"foo">>, <<"Goodbye, world!">>).
{ok,1271543165272987}

Failed attempt to replace a key that does not yet exist:

> brick_simple:replace(tab1, <<"key3">>, <<"new and improved value">>).
key_not_exist

Successful replacement of a key-value pair, with value to be stored in
RAM regardless of brick’s default storage setting:

> brick_simple:replace(tab1, "foo", "You again, world!", ['value_in_ram']).
{ok,1271543165272987}

Failed attempt to replace a key for which we have incorrectly
specified its current timestamp:

> brick_simple:replace(tab1, "foo", "Whole new value", [{'testset', 12345}]).
{ts_error,1271543165272987}

Successful replacement of a key-value pair for which we have correctly
specified its current timestamp:

> brick_simple:replace(tab1, "foo", "Whole new value", [{'testset', 1271543165272987}]).
{ok,1271543165272988}

Successful replacement of a key-value pair, using a non-default
operation timeout:

> brick_simple:replace(tab1, "foo", "Foo again?", 30000).
{ok,1271543165272989}

brick_simple:set/6

Set Key and Value pair (and optional Flags) in the table
Table, regardless of whether or not the key already exists.

	
brick_simple:set(Table, Key, Value)

	

	
brick_simple:set(Table, Key, Value, Flags)

	

	
brick_simple:set(Table, Key, Value, Timeout)

	

	
brick_simple:set(Table, Key, Value, ExpTime, Flags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table to which to set the key-value pair

	-type table() :: atom()

	Key (key()) – Key to set in to the table, in association with a paired value

	-type key() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

Note

While the Key may be specified as either iolist() or
binary(), it will be converted into binary before operation
execution. The same is true of Value.

	Parameters:	
	Value – Value to associate with the key

	-type val() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

	ExpTime (exp_time()) –
	Time at which the key will expire, expressed as a Unix
time_t().

	Optional; defaults to 0 (no expiration).

	-type exp_time() :: time_t()

	-type time_t() :: integer()

	Flags (flags_list()) –
	List of operational flags to apply to the set operation,
and/or custom property flags to associate with the key-value
pair in the database. Heavy use of custom property flags is
discouraged due to RAM-based storage

	Optional; defaults to empty list

	-type flags_list() :: [do_op_flag() | property()]

	-type do_op_flag() :: {'testset', timestamp()} | 'value_in_ram'
| {'exp_time_directive', 'keep' | 'replace'}
| {'attrib_directive', 'keep' | 'replace'}

	-type timestamp() :: integer()

	-type property() :: atom() | {term(), term()}

	Operational flag usage
	{'testset', timestamp()}
	Fail the operation if the existing key’s timestamp is not
exactly equal to timestamp(). If used inside a
link:#brick-simple-do[micro-transaction], abort the
transaction if the key’s timestamp is not exactly equal to
timestamp(). Using this flag with set will result
in an error if the key does not already exist or if the
key exists but has a non-matching timestamp.

	{'exp_time_directive', 'keep' | 'replace'}
	Default to 'replace'

	Specifies whether the ExpTime is kept from the old key
value pair or replaced with the ExpTime provided in
the replace operation

	{'attrib_directive', 'keep' | 'replace'}
	Default to 'replace'

	Specifies whether the custom properties are kept from the
old key value pair or replaced with the custom properties
provided in the set operation

	If kept, the custom properties remain unchanged. If you
specify custom properties explicitly in the set
operation, Hibari adds them to the resulting key value
pair

	If replaced, all original custom properties are deleted,
and then Hibari adds the custom properties in the set
operation to the resulting key value pair

	'value_in_ram'
	Store the value blob in RAM, overriding the default
storage location of the brick

Note

'value_in_ram' flag have not been extensively tested

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	{'ok', timestamp()}

Error returns

	Return type:	'key_not_exists'
	The operation failed because the {'testset', timestamp()}
flag was used and key does not exist

	-type timestamp() :: integer()

	Return type:	{'ts_error', timestamp()}
	The operation failed because the {'testset', timestamp()}
flag was used and there was a timestamp mismatch. The
timestamp() in the return is the current value of the
existing key’s timestamp.

	timestamp() = integer()

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_op_flag() was
found in the Flags argument.

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key is currently length zero and therefore unavailable.

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain.

	-type node() :: atom()

Examples

Successful setting of a key-value pair:

> brick_simple:set(tab1, <<"key4">>, <<"cool value">>).
{ok,1271542959131192}

Successful setting of a key-value pair, with value to be stored in RAM
regardless of brick’s default storage setting:

> brick_simple:set(tab1, "goo", "value6", ['value_in_ram']).
{ok,1271542959131193}

Failed attempt to set a key-value pair, when we have used the
testset flag but the key does not yet exist:

> brick_simple:set(tab1, "boo", "hoo", [{'testset', 1271543165272987}]).
key_not_exist

Successful setting of a key-value pair, when we have used the
testset flag and the key does already exist and its timestamp
matches our specified timestamp:

> brick_simple:set(tab1, "goo", "value7", [{'testset', 1271543165272432}]).
{ok,1271543165272433}

brick_simple:rename/6

Rename Key, Value pair, and Flags to NewKey in the
table Table if the key already exists. The operation will fail if:

	Key does not already exist

	... or Key and NewKey do not share a common key prefix.
(See TODO (Creating New Table - VarPrefix) for more details)

	
brick_simple:rename(Table, Key, NewKey)

	

	
brick_simple:rename(Table, Key, NewKey, Flags)

	

	
brick_simple:rename(Table, Key, NewKey, Timeout)

	

	
brick_simple:rename(Table, Key, NewKey, ExpTime, Flags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table to which to rename the key-value pair

	-type table() :: atom()

	Key (key()) – Key to rename in to the table, in association with a paired value

	-type key() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

Note

While the Key may be specified as either iolist() or
binary(), it will be converted into binary before operation
execution. The same is true of NewKey

	Parameters:	
	NewKey – NewKey in the table, in association with an existing paired
value

	-type val() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

	ExpTime (exp_time()) –
	Time at which the key will expire, expressed as a Unix
time_t().

	Optional; defaults to 0 (no expiration).

	-type exp_time() :: time_t()

	-type time_t() :: integer()

	Flags (flags_list()) –
	List of operational flags to apply to the rename
operation, and/or custom property flags to associate with the
key-value pair in the database. Heavy use of custom property
flags is discouraged due to RAM-based storage

	Optional; defaults to empty list

	-type flags_list() :: [do_op_flag() | property()]

	-type do_op_flag() :: {'testset', timestamp()} | 'value_in_ram'
| {'exp_time_directive', 'keep' | 'replace'}
| {'attrib_directive', 'keep' | 'replace'}

	-type timestamp() :: integer()

	-type property() :: atom() | {term(), term()}

	Operational flag usage
	{'testset', timestamp()}
	Fail the operation if the existing key’s timestamp is not
exactly equal to timestamp(). If used inside a
link:#brick-simple-do[micro-transaction], abort the
transaction if the key’s timestamp is not exactly equal to
timestamp().

	{'exp_time_directive', 'keep' | 'replace'}
	Default to 'keep'

	Specifies whether the ExpTime is kept from the old key
value pair or replaced with the ExpTime provided in
the rename operation

	{'attrib_directive', 'keep' | 'replace'}
	Default to 'keep'

	Specifies whether the custom properties are kept from the
old key value pair or replaced with the custom properties
provided in the rename operation

	If kept, the custom properties remain unchanged. If you
specify custom properties explicitly in the rename
operation, Hibari adds them to the resulting key value
pair

	If replaced, all original custom properties are deleted,
and then Hibari adds the custom properties in the rename
operation to the resulting key value pair

	'value_in_ram'
	Store the value blob in RAM, overriding the default
storage location of the brick

Note

'value_in_ram' flag have not been extensively tested

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	{'ok', timestamp()}

Error returns

	Return type:	'key_not_exists'
	The operation failed because the key does not exist or because
key and the new key are equal

	-type timestamp() :: integer()

	Return type:	{'ts_error', timestamp()}
	The operation failed because the {'testset', timestamp()}
flag was used and there was a timestamp mismatch. The
timestamp() in the return is the current value of the
existing key’s timestamp.

	timestamp() = integer()

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_op_flag() was
found in the Flags argument.

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key and the new key is currently length zero and
therefore unavailable.

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain.

	-type node() :: atom()

Examples

Successful renaming of a key-value pair:

> brick_simple:rename(tab1, <<"foo">>, <<"bar">>).
{ok,1271543165272987}

Failed attempt to rename a key that does not yet exist:

> brick_simple:rename(tab1, <<"key3">>, <<"bar">>).
key_not_exist

Successful renaming of a key-value pair, with value to be stored in
RAM regardless of brick’s default storage setting:

> brick_simple:rename(tab1, "foo", "bar", ['value_in_ram']).
{ok,1271543165272987}

Failed attempt to rename a key for which we have incorrectly
specified its current timestamp:

> brick_simple:rename(tab1, "foo", "bar", [{'testset', 12345}]).
{ts_error,1271543165272987}

Successful renaming of a key-value pair for which we have correctly
specified its current timestamp:

> brick_simple:rename(tab1, "foo", "bar", [{'testset', 1271543165272987}]).
{ok,1271543165272988}

Successful renaming of a key-value pair, using a non-default
operation timeout:

> brick_simple:rename(tab1, "foo", "bar", 30000).
{ok,1271543165272989}

brick_simple:get/4

From table Table, retrieve Key and specified attributes of the
key (as determined by Flags).

	
brick_simple:get(Table, Key)

	

	
brick_simple:get(Table, Key, Flags)

	

	
brick_simple:get(Table, Key, Timeout)

	

	
brick_simple:get(Table, Key, Flags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table from which to retrieve the key-value pair

	-type table() :: atom()

	Key (key()) – Key to retrieve from to the table

	-type key() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

Note

While the Key may be specified as either iolist() or
binary(), it will be converted into binary before operation
execution

	Parameters:	
	Flags (flags_list()) –
	List of operational flags to apply to the get operation.

	Optional; defaults to empty list

	-type flags_list() :: [do_op_flag()]

	-type do_op_flag() :: 'get_all_attribs' | 'witness'
| {'testset', timestamp()}
| 'must_exist' | 'must_not_exist'

	-type timestamp() :: integer()

	Operational flag usage
	'get_all_attribs'
	Return all attributes of the key. May be used in
combination with the witness flag

	'witness'
	Do not return the value blob in the result. This flag will
guarantee that the brick does not require disk access to
satisfy this request

	{'testset', timestamp()}
	Fail the operation if the key’s timestamp is not exactly
equal to timestamp(). If used inside a
link:#brick-simple-do[micro-transaction], abort the
transaction if the key’s timestamp is not exactly equal to
timestamp().

	This flag has priority over the 'must_exist' and
'must_not_exist' flags

	'must_exist'
	For use inside a link:#brick-simple-do[micro-transaction]:
abort the transaction if the key does not exist

	'must_not_exist'
	For use inside a link:#brick-simple-do[micro-transaction]:
abort the transaction if the key exists. This flag may be
useful when the relationship between two or more keys is
important to the client application

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success returns

	Return type:	{'ok', timestamp(), val()}
	Success return when the get request uses neither the
'witness' flag nor the 'get_all_attribs' flag

	-type timestamp() :: integer()

	-type val() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

	Return type:	{'ok', timestamp()}
	Success return when the get uses 'witness' but not
'get_all_attribs'

	Return type:	{'ok', timestamp(), exp_time(), proplist()}
	Success return when the get uses both 'witness' and
'get_all_attribs'

	-type exp_time() :: time_t()

	-type proplist() :: [property()]

	-type property() :: atom() | {term(), term()}

	Return type:	{'ok', timestamp(), val(), exp_time(), proplist()}
	Success return when the get uses 'get_all_attribs' but not
'witness'

	-type exp_time() :: time_t()

Note

When a proplist() is returned, one of the properties in the
list will always be {val_len, Size::integer()}, where
Size is the size of the value blob in bytes

Error returns

	Return type:	'key_not_exist'
	The operation failed because the key does not exist.

	Return type:	{'ts_error', timestamp()}
	The operation failed because the {'testset', timestamp()}
flag was used and there was a timestamp mismatch. The
timestamp() in the return is the current value of the
existing key’s timestamp.

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_op_flag() was
found in the Flags argument

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key is currently length zero and therefore unavailable.

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain.

	-type node() :: atom()

Examples

Successful retrieval of a key-value pair:

> brick_simple:get(tab1, "goo").
{ok,1271543165272432,<<"value7">>}

Successful retrieval of a key without its associated value blob:

> brick_simple:get(tab1, "goo", ['witness']).
{ok,1271543165272432}

Failed attempt to retrieve a key that does not exist:

> brick_simple:get(tab1, "moo").
key_not_exist

brick_simple:get_many/5

Get many keys from a single chain in the table Table, up to a
maximum of MaxNum keys. Keys are returned in lexicographic sorting
order starting with the first key _after_ the key specified by the
Key argument. The return list includes a boolean value indicating
whether or not there are more keys after the last key of the return
results.

Important

A single get_many() function call cannot be used to retrieve
keys from across multiple storage chains. The consistent hash of
Key will send the get_many operation to the tail brick in a
single chain; all keys returned will come from that single brick
only.

	
brick_simple:get_many(Table, Key, MaxNum)

	

	
brick_simple:get_many(Table, Key, MaxNum, Flags)

	

	
brick_simple:get_many(Table, Key, MaxNum, Timeout)

	

	
brick_simple:get_many(Table, Key, MaxNum, Flags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table to which to retrieve the key-value pair

	-type table() :: atom()

	Key (key()) – Key after which to start the get_many retrieval, proceeding
in lexicographic order with the first key after the specified
Key

	-type key() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

Note

While the Key may be specified as either iolist() or
binary(), it will be converted into binary before operation
execution

	Parameters:	
	MaxNum (integer()) – Maximum number of keys to return

	Flags –
	List of operational flags to apply to the get_many
operation.

	Optional; defaults to empty list

	-type flags_list() :: [do_op_flag()]

	-type do_op_flag() :: 'get_all_attribs' | 'witness'
| {'binary_prefix', binary()}
| {'max_bytes', integer()}
| {'max_num', integer()}

	-type timestamp() :: integer()

	-type property() :: atom() | {term(), term()}

	Operational flag usage

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success returns

	Return type:	{ok, {[{key(), timestamp(), val()}], boolean()}}

	Success return when the get_many request uses neither the
'witness' flag nor the 'get_all_attribs' flag

	-type timestamp() :: integer()

	-type val() :: iodata()

	-type iodata() :: iolist() | binary()

	iolist() :: [char() | binary() | iolist()]

	Return type:	{ok, {[{key(), timestamp()}], boolean()}}

	Success return when the get_many uses 'witness' but
not 'get_all_attribs'

	Return type:	{ok, {[{key(), timestamp(), exp_time(), proplist()}], boolean()}}

	Success return when the get_many uses both 'witness'
and 'get_all_attribs'

	-type exp_time() :: time_t()

	-type proplist() :: [property()]

	property() :: atom() | {term(), term()}

	Trype:	{ok, {[{key(), timestamp(), val(), exp_time(), proplist()}], boolean()}}

	Success return when the get_many uses
'get_all_attribs' but not 'witness'

	exp_time() :: time_t()

Note

The boolean at the end of the success return indicates whether
or not the chain has more keys lexicographically after the last
key in the return (true for yes, false for no). When a
proplist() is returned, one of the properties in the list
will always be {val_len, Size::integer()}, where Size is
the size of the value blob in bytes.

Error returns

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_op_flag() was
found in the Flags argument.

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key is currently length zero and therefore unavailable.

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain.

	-type node() :: atom()

Examples

Successful retrieval of all keys from a table that currently has only
two keys. The boolean false’ indicates that there are no keys
following the ``foo` key:

> brick_simple:get_many(tab1, "", 5).
{ok,{[{<<"another">>,1271543102911775,<<"yes!">>},
 {<<"foo">>,1271543165272987,<<"Foo again?">>}],
 false}}

Successful retrieval of all keys from a table that currently has only
two keys, using the witness flag in the request:

> brick_simple:get_many(tab1, "", 5, ['witness']).
{ok,{[{<<"another">>,1271543102911775},
 {<<"foo">>,1271543165272987}],
 false}}

Successful retrieval of all keys from a table that currently has only
two keys, using the get_all_attribs flag in the request.:

> brick_simple:get_many(tab1, "", 5).
{ok,{[{<<"another">>,1271543102911775,<<"yes!">>,0,[{val_len,4}]},
 {<<"foo">>,1271543165272987,<<"Foo again?">>,0,[{val_len,6}]}],
 false}}

brick_simple:delete/4

Delete key Key from the table Table. The operation will fail if
Key does not already exist

	
brick_simple:delete(Table, Key)

	

	
brick_simple:delete(Table, Key, Flags)

	

	
brick_simple:delete(Table, Key, Timeout)

	

	
brick_simple:delete(Table, Key, Flags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table from which to delete the key-value pair

	-type table() :: atom()

	Key (key()) – Key to delete from the table

	-type key() :: iodata()

	-type iodata() :: iolist() | binary()

	-type iolist() :: [char() | binary() | iolist()]

Note

While the Key may be specified as either iolist() or
binary(), it will be converted into binary before operation
execution

	Parameters:	
	Flags (flags_list()) –
	List of operational flags to apply to the delete
operation.

	Optional; defaults to empty list

	-type flags_list() :: [do_op_flag()]

	-type do_op_flag() :: {'testset', timestamp()}
| 'must_exist' | 'must_not_exist'

	-type timestamp() :: integer()

	Operational flag usage
	{'testset', timestamp()}
	Fail the operation if the existing key’s timestamp is not
exactly equal to timestamp(). If used inside a
link:#brick-simple-do[micro-transaction], abort the
transaction if the key’s timestamp is not exactly equal to
timestamp(). This flag has priority over the
'must_exist' and 'must_not_exist' flags

	'must_exist'
	For use inside a link:#brick-simple-do[micro-transaction]:
abort the transaction if the key does not exist

	'must_not_exist'
	For use inside a link:#brick-simple-do[micro-transaction]:
abort the transaction if the key exists. This flag may be
useful when the relationship between two or more keys is
important to the client application

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	'ok'

Error returns

	Return type:	'key_not_exist'
	The operation failed because the key does not exist

	Return type:	{'ts_error', timestamp()}
	The operation failed because the {'testset', timestamp()}
flag was used and there was a timestamp mismatch. The
timestamp() in the return is the current value of the
existing key’s timestamp.

	timestamp() = integer()

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_op_flag() was
found in the Flags argument.

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key is currently length zero and therefore unavailable.

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain.

	-type node() :: atom()

Examples

Successful deletion of a key and its associated value and attributes:

> brick_simple:delete(tab1, <<"foo">>).
ok

Failed attempt to delete a key that does not exist:

> brick_simple:delete(tab1, "key6").
key_not_exist

Failed attempt to delete a key for which we have incorrectly specified
its current timestamp:

> brick_simple:delete(tab1, "goo", [{'testset', 12345}]).
{ts_error,1271543165272987}

Successful deletion of a key for which we have correctly specified its
current timestamp:

> brick_simple:delete(tab1, "goo", [{'testset', 1271543165272987}]).
ok

Successful deletion of a key, using a non-default operation timeout:

> brick_simple:delete(tab1, "key3", 30000).
ok

brick_simple:do/4

Send a list of primitive operations to the table Table. They will
be executed at the same time by a Hibari brick. If the first item in
the OpList is brick_server:make_txn() then the list of
operations is executed in the context of a micro-transaction: either
all operations will be executed successfully or none will be executed.

We term these “micro”-transactions because they are subject to certain
limitations that apply to all operations that use the
brick_simple:do() API:

	All impacted keys must be in the same table.

	All impacted keys must be in the same chain.

	All operations in the transaction must be sent in a single
brick_simple:do() call. Unlike some other databases, it is not
possible to request a transaction handle and to add operations to
that transaction in an one-by-one, “ad hoc” manner.

For further information about micro-transactions, see
link:hibari-sysadmin-guide.en.html#micro-transactions[Hibari System
Administrator’s Guide, “Micro-Transactions” section].

	
brick_simple:do(Table, OpList)

	

	
brick_simple:do(Table, OpList, Timeout)

	

	
brick_simple:do(Table, OpList, OpFlags, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table in which to perform the operations

	-type table() :: atom()

	OpList (do_op_list()) –
	List of primitive operations to perform. Each primitive is
invoked using the brick_server:make_*() API

	-type do_op_list() :: [do1_op()]

	-type do1_op() ::
	brick_server:make_add(Key, Value, ExpTime, Flags)

	brick_server:make_replace(Key, Value, ExpTime, Flags)

	brick_server:make_set(Key, Value, ExpTime, Flags)

	brick_server:make_rename(Key, NewKey, ExpTime, Flags)

	brick_server:make_get(Key, Flags)

	brick_server:make_get_many(Key, Flags)

	brick_server:make_delete(Key, Flags)

	brick_server:make_txn()
	Include brick_server:make_txn() as the first item in
your OpList if you want the do operation to be
executed as an atomic transaction

	Note that the arguments for each primitive are the same as
those for the primitives when they are executed on their
own, with the exclusion of the Tab and Timeout
arguments, both of which serve as arguments to the overall
do operation rather than as arguments to the
primitives. For example, an add on its own is
brick_simple:add(Tab, Key, Value, ExpTime, Flags,
Timeout), whereas in the context of a do operation
an add primitive is brick_server:make_add(Key,
Value, ExpTime, Flags)

	For further information about each primitive, see
link:#brick-simple-add[brick_simple:add/6],
link:#brick-simple-replace[brick_simple:replace/6],
link:#brick-simple-set[brick_simple:set/6],
link:#brick-simple-rename[brick_simple:rename/6],
link:#brick-simple-get[brick_simple:get/4],
link:#brick-simple-get-many[brick_simple:get_many/5], and
link:#brick-simple-delete[brick_simple:delete/4]

	OpFlags (do_flags_list()) –
	List of operational flags to apply to the overall do
operation.

	Optional; defaults to empty list

	-type do_flags_list() :: [do_flag()]

	-type do_flag() :: 'fail_if_wrong_role' | 'ignore_role'

	Operational flag usage
	'fail_if_wrong_role'
	If the ‘do’ operation is sent to the wrong brick in the
target chain (e.g. a ‘read’ request mistakenly sent to
the ‘head’ brick or a ‘write’ request mistakenly sent to
the ‘tail’ brick), fail the transaction immediately. If
this flag is not used, the default behavior is for the
incorrect brick to forward the request to the correct
brick

	'ignore_role'
	If this flag is used, then whichever brick receives the
request will reply to the request directly, regardless of
the brick’s assigned role

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	[do1_res_ok]
	List of do1_res_ok, one for each primitive operation
specified in the do request. Return list order corresponds
to the order in which primitive operations are listed in the
request’s OpList. Note that if the do request does not
use transaction semantics, then some individual primitive
operations may fail without the overall do operation
failing

	Within the return list, possible do1_res_ok returns to
each individual primitive operation are the same as the
possible returns that the primitive operation type could
generate if it were executed on its own. For example, within
the do operation’s success return list, the possible
returns for a primitive add operation are the same as the
returns described in the
link:#brick-simple-add[brick_simple:add/6] section; potential
returns to a primitive replace operation are the same as
those described in the
link:#brick-simple-replace[brick_simple:replace/6] section; and
likewise for link:#brick-simple-set[set],
likewise for link:#brick-simple-rename[rename],
link:#brick-simple-get[get],
link:#brick-simple-get-many[get_many], and
link:#brick-simple-delete[delete].

Error returns

	Return type:	{txn_fail, [{integer(), do1_res_fail()}]}
	Operation failed because transaction semantics were used in
the do request and one or more primitive operations within
the transaction failed. The integer() identifies the
failed primitive operation by its position within the
request’s OpList. For example, a 2 indicates that the
second primitive listed in the request’s OpList
failed. Note that this position identifier does not count the
txn() specifier at the start of the OpList.

	do1_res_fail() indicates the type of failure for the
failed primitive operation. Possibilities are:
	{'key_exists', timestamp()}
	-type timestamp() :: integer()

	'key_not_exist'

	{'ts_error', timestamp()}

	'invalid_flag_present'

	Return type:	'invalid_flag_present'
	The operation failed because an invalid do_flag() was
found in the do request’s OpFlags argument. Note this
is a different error than an invalid flag being found within
an individual primitive

	Return type:	'brick_not_available'
	The operation failed because the chain that is responsible for
this key is currently length zero and therefore unavailable

	Return type:	{{'nodedown',node()},{'gen_server','call',term()}}
	The operation failed because the server brick handling the
request has crashed or else a network partition has occurred
between the client and server. The client should resend the
query after a short delay, on the assumption that the Admin
Server will have detected the failure and taken steps to
repair the chain

	-type node() :: atom()

Examples

Successful do operation adding two new keys to table tab1,
without transaction semantics:

> brick_simple:do(tab1, [brick_server:make_add("foo3", "bar3"),
 brick_server:make_add("foo4", "bar4")]).
[ok,ok]

Successful creation of two get primitives Do1` and ``Do2`, and
their subsequent combination into a ``do request, without
transaction semantics:

> Do1 = brick_server:make_get("foo").
{get,<<"foo">>,[]}
> Do2 = brick_server:make_get("foo2").
{get,<<"foo2">>,[]}
> brick_simple:do(tab1, [Do1, Do2]).
[{ok,1271543102911775,<<"Foo again?">>},key_not_exist]

Failed operation with transaction semantics. Because transaction
semantics are used, the failure of the primitive Do2b causes the
entire operation to fail:

> Do1b = brick_server:make_get("foo").
{get,<<"foo">>,[]}
> Do2b = brick_server:make_get("foo2", [must_exist]).
{get,<<"foo2">>,[must_exist]}
> brick_simple:do(tab1, [brick_server:make_txn(), Do1b, Do2b]).
{txn_fail,[{2,key_not_exist}]}

brick_simple:fold_table/7

Attempt a fold operation across all keys in a table. For general
information about the Erlang fold function that underlies this
operations, see http://www.erlang.org/doc/man/lists.html#foldl-3.

Important

Do not execute this operation while a data migration is being
performed

	
brick_simple:fold_table(Table, Fun, Acc, NumItems, Flags)

	

	
brick_simple:fold_table(Table, Fun, Acc, NumItems, Flags, MaxParallel)

	

	
brick_simple:fold_table(Table, Fun, Acc, NumItems, Flags, MaxParallel, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table across which to perform the fold operation

	-type table() :: atom()

	Fun (fun_arity_2()) – Function to apply to successive elements of the list

	-type fun_arity_2() :: fun(({ChainName, TupleFromGetMany}, Acc) -> Acc)
	TupleFromGetMany is a single result tuple from a
link:#brick-simple-get-many[brick_simple:get_many()]
result. Its format can vary according to the Flags
argument, which is passed as-is to a get_many() call. For
example, if Flags = [], then TupleFromGetMany
will match {Key, TS, Value}. If Flags = [witness],
then TupleFromGetMany will match {Key, TS}

	Acc
	The accumulator term

	Acc (term()) – Initial value of the accumulator term

	NumItems (integer()) – Batch size used for get_many operations used by the fold
function

	Flags (flags_list()) –
	List of operational flags to apply to the fold_table
operation, The supported flags are the same as those for
link:#brick-simple-get-many[brick_simple:get_many()]

	-type flags_list() :: [do_op_flag() | property()]

	-type do_op_flag() :: 'get_all_attribs' | 'witness'
{'binary_prefix', binary()} |
{'max_bytes', integer()}

	-type property() :: atom() | {term(), term()}

	Operational flag usage
	'get_all_attribs'
	Return all attributes of each key. May be used in
combination with the witness flag

	'witness'
	Do not return the value blobs in the result. This flag will
guarantee that the brick does not require disk access to
satisfy this request

	{'binary_prefix', binary()}
	Return only keys that have a binary prefix that is exactly
equal to binary()

	{'max_bytes', integer()}
	Return only as many keys as the sum of the sizes of their
corresponding value blobs does not exceed integer()
bytes

	MaxParallel (integer()) –
	If MaxParallel = 0, a true fold will be performed. If
MaxParallel >= 1, then an independent fold will be
performed on each chain, with up to MaxParallel number of
folds running in parallel. The result from each chain fold
will be returned to the caller as-is, i.e. will not be
combined like in a “reduce” phase of a map-reduce cycle

	Optional; defaults to 0

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	{ok, Acc::term(), Iterations::integer()}

Error return

	Return type:	{error, Error::term(), Acc::term(), Iterations::integer()}

Examples

to be added

brick_simple:fold_key_prefix/9

For a binary key prefix Prefix, fold over all keys in table
Table starting with StartKey, sleeping for SleepTime
milliseconds between iterations and using Flags and NumItems
as arguments to link:#brick-simple-get-many[brick_simple:get_many()].
For general information about the Erlang fold function that underlies
this operations, see http://www.erlang.org/doc/man/lists.html#foldl-3.

Important

Do not execute this operation while a data migration is being
performed

	
brick_simple:fold_key_prefix(Table, Prefix, Fun, Acc, Flags)

	

	
brick_simple:fold_key_prefix(Table, Prefix, StartKey, Fun, Acc, Flags, NumItems, SleepTime, Timeout)

	

	Parameters:	
	Table (table()) – Name of the table in which to perform the fold operation

	-type table() :: atom()

	Prefix (binary()) – Key prefix for which to perform the fold operation

	StartKey (binary()) –
	Key at which to initiate the fold operation

	Optional; defaults to equal your specified Prefix

	Fun (fun_arity_2()) – Function to apply to successive elements of the list

	-type fun_arity_2() :: fun(({ChainName, TupleFromGetMany}, Acc) -> Acc)
	TupleFromGetMany is a single result tuple from a
link:#brick-simple-get-many[brick_simple:get_many()]
result. Its format can vary according to the Flags
argument, which is passed as-is to a get_many() call. For
example, if Flags = [], then TupleFromGetMany
will match {Key, TS, Value}. If Flags = [witness],
then TupleFromGetMany will match {Key, TS}

	Acc
	The accumulator term

	Acc (term()) – Initial value of the accumulator term

	Flags (flags_list()) –
	List of operational flags to apply to the fold_key_prefix
operation. The supported flags are the same as those for
link:#brick-simple-get-many[brick_simple:get_many()],
excluding the {'binary_prefix', binary()} flag. This flag
is inappropriate since the key prefix is passed directly
through the Prefix argument of
brick_simple:fold_key_prefix()

	-type flags_list() :: ['get_all_attribs' | 'witness'
| {'max_bytes', integer()}]

	Operational flag usage

	'get_all_attribs'
	Return all attributes of each key. May be used in
combination with the witness flag

	'witness'
	Do not return the value blobs in the result. This flag
will guarantee that the brick does not require disk
access to satisfy this request

	{'max_bytes', integer()}
	Return only as many keys as the sum of the sizes of
their corresponding value blobs does not exceed
integer() bytes

	NumItems (integer()) – Batch size used for get_many operations used by the fold
function

	SleepTime (integer()) –
	Sleep time between interations, in milliseconds

	Optional; defaults to 0

	Timeout (timeout()) –
	Operation timeout in milliseconds

	Optional; defaults to 15000

	-type timeout() :: integer() | 'infinity'

Success return

	Return type:	{ok, Acc::term(), Iterations::integer()}

Error return

	Return type:	{error, Error::term(), Acc::term(), Iterations::integer()}

Examples

to be added

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Client API: UBF

link:http://github.com/ubf/ubf[The UBF protocol] is a
formally-specified family of protocols that are supported by a large
number of client languages. This section attempts to describe the
layers of the UBF protocol stack, how to use the UBF client in Erlang
and other languages, and how to use that client to access a Hibari
storage cluster.

The Hibari source distribution includes UBF/EBF protocol support for the
following languages:

	Erlang, see xref:using-ubf-erlang-client[]

	Java, see xref:using-ubf-java-client[]

	Python, see xref:using-ubf-python-client[]

[[hibari-server-impl-of-ubf-proto-stack]]

The Hibari Server’s Implementation of the UBF Protocol Stack

UBF(A): Bottom Layer, transport and session protocol layer

This layer plays the same basic role as many other serialized data
transport protocols that use TCP for host-to-host transport, such as
link:http://en.wikipedia.org/wiki/Open_Network_Computing_Remote_Procedure_Call[ONC-RPC],
link:http://en.wikipedia.org/wiki/IIOP[CORBA IIOP],
link:http://en.wikipedia.org/wiki/Protocol_buffers[Protocol Buffers],
and link:http://en.wikipedia.org/wiki/Thrift_(protocol)[Thrift].

Hibari servers support several of these session protocols on top
of a TCP/IP transport protocol. The choice of session protocol is
a matter of convenience and/or support for the application
developer. Hibari should be as easy for an app developer to use
Ruby and JSON-RPC as it is to use Python and Thrift or EBF.

	UBF(A), Joe Armstrong’s original session layer protocol

	EBF, the Erlang Binary Format. The session layer protocol is a
thin, efficient that uses the Erlang BIFs term_to_binary() and
binary_to_term() to serialize Erlang data terms. This protocol
is very closely related to the link:http://bert-rpc.org/[BERT protocol].

	JSON over TCP, also called JSF (the JavaScript
Format). Erlang terms are encoded as
link:http://en.wikipedia.org/wiki/JSON[JSON terms]
and transmitted directly over a TCP transport. This
protocol is not in common use but is easy to implement in the UBF
server framework.

	HTTP, the link:http://en.wikipedia.org/wiki/HTTP[Hypertext
Transfer Protocol]. This protocol is used to support Hibari’s
link:http://en.wikipedia.org/wiki/JSON-RPC[JSON-RPC] server.

	link:http://en.wikipedia.org/wiki/Thrift_(protocol)[Thrift].
Similar to EBF, except that Thrift’s binary encoding is used for
the wire protocol instead of UBF(A) or Erlang’s native wire
formats.

	link:http://en.wikipedia.org/wiki/Protocol_buffers[Protocol Buffers].
Similar to EBF, except that Google’s Protocol Buffers binary
encoding is used for the wire protocol instead of UBF(A) or
Erlang’s native wire formats.
Hibari support is experimental (i.e. not yet implemented).

	link:http://hadoop.apache.org/avro/docs/current/[Avro].
Similar to EBF, except that Avro’s binary encoding is used for the
wire protocol instead of UBF(A) or Erlang’s native wire formats.
Hibari support is experimental (i.e. not yet implemented).

UBF(B): Middle Layer, the “contract”

UBF(B) is a programming language for describing types in UBF(A)
and protocols between clients and servers. UBF(B) is roughly
equivalent to to Verified XML, XML-schemas, SOAP and WDSL.

This layer enforces a protocol “contract”, a formal specification of
all data sent by the client and by the server. Any data that does not
precisely conform to the protocol is rejected by the contract checker
(which is embedded in the server). If the client wishes, it may also
use the contract checker to validate data sent by the server, though
this not commonly done.

UBF(C): Top Layer, the UBF Metaprotocol

The metaprotocol is used at the beginning of a UBF session to select
one of the UBF(B) contracts that the TCP listener is capable of
offering. At the moment, Hibari servers support only the “gdss”
contract, but other contracts may be added in the future.

[[ubf-representation-of-strings]]

UBF representation of strings vs. binaries

The Erlang language does not have a data type specifically for
strings. Instead, strings are typically represented as lists of
integers (ASCII byte values) and/or binaries.

A UBF contract makes a distinction between a string, list, and
binary. In the case of a string, UBF(A) encodes a string using the
notation {'#S', "Hello, world!"} to represent the string “Hello,
world!”.

This string encoding is cumbersome to use for developers; in Erlang,
the ubf.hrl header file includes a macro ?S("Hello, world!")
as a slightly less ugly shortcut. When using other languages, the
2-tuple and the atom '#S' would be created as any other 2-tuple
and atom.

Fortunately, there is only one case where the string type is
necessary: using the startSession metaprotocol command to start
using the Hibari data server contract. An example will be shown
below.

[[using-ubf-in-any-language]]

Steps for Using a UBF-based Protocol in Any Language

The steps to use a UBF-based protocol are the same in any language.

	Create a connection to the UBF server.
	... or the EBF server, or the JSON-RPC server, or the Thrift
server, or the

	Use the UBF metaprotocol to start using the gdss contract,
i.e. the Hibari server contract.

	Send one or more Hibari server queries and decode the respective
server responses.

	Close the connection to the UBF server.

[[the-hibari-ubf-protocol-contract]]

The Hibari UBF Protocol Contract

The Hibari UBF Protocol contract can be found in the file
ubf_gdss_plugin.con.

Note

See the Hibari source code for the most up-to-date version of
this file. link:./misc-codes/ubf_gdss_plugin.con[This documentation has a copy
of ubf_gdss_plugin.con], though it may be slightly out-of-date.

The names of the UBF types specified in the contract may differ
slightly from the names of the types used in this document’s
xref:client-api-erlang[]. For example, the UBF contract calls the key
expiration time time exp_time(), while the type system in this
document calls it expiry(). However, in all cases of slightly
different names, the fundamental data type that both names use is the
same: e.g. integer() for expiration time.

For each command, the UBF contract uses the following naming
conventions:

	CommandName_req() for the request sent from client -> server,
e.g. set_req() for the set command.

	CommandName_res() for the response sent from server -> client,
e.g. set_res() for the set response.

The general form of a UBF RPC call is a tuple. The first element in
the tuple is the name of the command, and the following elements are
arguments for that command. The response can be any Erlang term, but
the Hibari contract will only return the atom or tuple types.

The following is a mapping of UBF client request type to its Erlang
API function, in alphabetical order.:

	add_req() -> brick_simple:add(), see xref:brick-simple-add[].

	delete_req() -> brick_simple:delete(), see
xref:brick-simple-delete[].

	do_req() -> brick_simple:do(), see xref:brick-simple-do[].

	get_req() -> brick_simple:get(), see xref:brick-simple-get[].

	get_many_req() -> brick_simple:get_many(), see
xref:brick-simple-get-many[].

	replace_req() -> brick_simple:replace(), see
xref:brick-simple-replace[].

	set_req() -> brick_simple:set(), see xref:brick-simple-set[].

	rename_req() -> brick_simple:rename(), see
xref:brick-simple-rename[].

[[using-ubf-erlang-client]]

Using the UBF Client Library for Erlang

Important

	When using the Erlang shell for experimentation & prototyping, that
shell must have the path to the Erlang UBF client
library in its search path. The easiest way to do this is to use
the arguments -pz /path/to/ubf/library/ebin to your Erlang
shell’s erl command.

	When writing code, the statement -include("ubf.hrl"). at the top
of your source module to gain access to the ?S() macro. Due to
limitations in the Erlang shell, macros cannot be used in the shell.

As outlined in xref:using-ubf-in-any-language[], the first step is to
create a connection to a Hibari server. If the Hibari cluster has
multiple nodes, then it doesn’t matter which one that you connect to:
all nodes can handle any UBF request and will route the query to the
proper brick.

	Create a connection to the UBF server (on “localhost” TCP port 7581):

(asdf@bb3)54> {ok, P1, _} = ubf_client:connect("localhost", 7581, [{proto, ubf}], 5000).
{ok,<0.139.0>,{'#S', "gdss_meta_server"}}

The second step is to use the UBF metaprotocol to select the Hibari
server, contract, called “gdss”, for all further commands for this
connection.

Tip

The Hibari server contract is “stateless”. All replies terms
from the ubf_client:rpc/2 function use the form
{reply,ServerReply,UBF_StateName}. Because the Hibari
server contract is stateless, the UBF_StateName will
always be the atom none.

	Use the UBF metaprotocol to request the “gdss” contract:

(asdf@bb3)55> ubf_client:rpc(P1, {startSession, {'#S', "gdss"}, []}).
{reply,{ok,ok},none}

Now that the UBF connection is set up, we can use it to set a key
“foo”.

	Set the key “foo” in table tab1 with the value “foo val”, no
expiration time, no flags, and a timeout of 5 seconds:

(asdf@bb3)59> ubf_client:rpc(P1, {set, tab1, <<"foo">>, <<"foo val">>, 0, [], 5000}).
{reply,ok,none}

Note

Note that the return value of both the set_req() (in the
example above) and get_req() (in the example below) return the
same types described in the xref:brick-simple-set[] and
xref:brick-simple-get[], respectively.

The only difference is that the ubf_client:rpc/2 function wraps
the server’s reply in a 3-tuple: {reply,ServerReply,none}.

	Get the key “foo” in table tab1, timeout in 5 seconds:

(asdf@bb3)66> ubf_client:rpc(P1, {get, tab1, <<"foo">>, [], 5000}).
{reply,{ok,1273009092549799,<<"foo val">>},none}

If the client sends a request that violates the contract, the server
will tell you, as in this example.

	Send a contract-violating request:

(asdf@bb3)89> ubf_client:rpc(P1, {bbb, 3000}).
{reply,{clientBrokeContract,{bbb,3000},[]},none}

When you are done with the connection, it is polite to close the
connection explicitly. The server will quietly clean up its side
of the connection if the client forgets to call or cannot call
stop/1.

	Close the UBF connection:

(asdf@bb3)92> ubf_client:stop(P1).
ok

[[using-ubf-java-client]]

Using the UBF Client Library for Java

The source code for the UBF client library for Java is included in
the UBF source repository at
link:http://github.com/ubf/ubf[http://github.com/ubf/ubf], in
the priv/java subdirectory.

Compiling the UBF client library for Java

	Please update your UBF client library code to the “master” branch
for a date after 10 May 2010, or use the Git tag “v1.14” or later.
Versions of the library before 10 May 2010 and tag “v1.14” have
several bugs that will prevent the UBF client from working
correctly.

	Change directory to the priv/java directory of the UBF client
library source distribution.

	Run make.

	(Optional) Copy the class files in the classes subdirectory to
a suitable directory for your Java development environment.

Compiling the UBF client library test program HibariTest.java

	Change directory to the gdss-ubf-proto/priv/java subdirectory in
the Hibari source distribution.

	Edit the Makefile to change the UBF_CLASSES_DIR variable to
point to the priv/java/classes subdirectory of the UBF package’s
source code (or the subdirectory where those classes have been
formally installed on your system).

	Run the following two make commands. The second assumes that the
Hibari server’s UBF server is on the local machine, “localhost”:

$ make HibariTest
$ make run-HibariTest

	If the Hibari server is not running on the local machine, then run
make -n run-HibariTest to show the java command that is
used to run the test program. Cut-and-paste the command into your
shell, then edit the last argument to specify the hostname of a
Hibari server.

Examining the HibariTest.java test program

The main() function does three things:

	Create a new UBF connection to a Hibari server (hostname/IP address
is specified in the first command line argument) and requests the
gdss contract via the UBF metaprotocol.

	Run the small test cases in the test_hibari_basics() method.

	Close the UBF session and exit.

The ubf.HibariTest.main() method

public class HibariTest {

 public static void main(String[] args) throws Exception {
 Socket sock = null;
 UBFClient ubf = null;

 try {
 sock = new Socket(args[0], 7581);
 ubf = UBFClient.new_via_sock(new UBFString("gdss"), new UBFList(),
 new FooHandler(), sock);
 } catch (Exception e) {
 System.out.println(e);
 System.exit(1);
 }

 test_hibari_basics(ubf);

 ubf.stopSession();
 System.out.println("Success, it works");
 System.exit(0);
 }
 /* ... */
 }

The test_hibari_basics() method performs the same basic UBF
operations as the Python EBF demonstration script described in
xref:using-ubf-python-client[]. Unlike the Python demo script, the
demo program does not use the Hibari do() command but rather then
single-operation commands like get(and set().

	Delete the key foo from table tab1:

public static void test_hibari_basics(UBFClient ubf)
 throws IOException, UBFException {
 // setup
 UBFObject res1 = ubf.rpc(
 UBF.tuple(new UBFAtom("delete"), new UBFAtom("tab1"),
 new UBFBinary("foo"), new UBFList(),
 new UBFInteger(4000)));
 System.out.println("Res 1:" + res1.toString());

	Add the key foo to table tab1:

// add - ok
UBFObject res2 = ubf.rpc(
 UBF.tuple(new UBFAtom("add"), atom_tab1,
 new UBFBinary("foo"), new UBFBinary("bar"),
 new UBFInteger(0), new UBFList(),
 new UBFInteger(4000)));
System.out.println("Res 2:" + res2.toString());
if (! res2.equals(atom_ok))
 System.exit(1);

	Add the key foo to table tab1 again, this time expecting a failure:

// add - ng
UBFObject res3 = ubf.rpc(
 UBF.tuple(new UBFAtom("add"), atom_tab1,
 new UBFBinary("foo"), new UBFBinary("bar"),
 new UBFInteger(0), new UBFList(),
 new UBFInteger(4000)));
System.out.println("Res 3:" + res3.toString());
if (! ((UBFTuple)res3).value[0].equals(atom_key_exists))
 System.exit(1);

	Get the key foo from table tab1:

// get - ok
UBFObject res4 = ubf.rpc(
 UBF.tuple(new UBFAtom("get"), atom_tab1,
 new UBFBinary("foo"), new UBFList(),
 new UBFInteger(4000)));
System.out.println("Res 4:" + res4.toString());
if (! ((UBFTuple)res4).value[0].equals(atom_ok) ||
 ! ((UBFTuple)res4).value[2].equals("bar"))
 System.exit(1);

	Set the key foo in table tab1 to bar bar:

// set - ok
UBFObject res5 = ubf.rpc(
 UBF.tuple(new UBFAtom("set"), atom_tab1,
 new UBFBinary("foo"), new UBFBinary("bar bar"),
 new UBFInteger(0), new UBFList(),
 new UBFInteger(4000)));
System.out.println("Res 5:" + res5.toString());
if (! res5.equals(atom_ok))
 System.exit(1);

	Get foo again and verify that the value is bar bar:

// get - ok
UBFObject res6 = ubf.rpc(
 UBF.tuple(new UBFAtom("get"), atom_tab1,
 new UBFBinary("foo"), new UBFList(),
 new UBFInteger(4000)));
System.out.println("Res 6:" + res6.toString());
if (! ((UBFTuple)res6).value[0].equals(atom_ok) ||
 ! ((UBFTuple)res6).value[2].equals("bar bar"))
 System.exit(1);

The UBF event handler interface

Each UBFClient instance uses a separate thread to read data from
the server and do any of the following:

	Signal to the other thread that a synchronous RPC response was
received from the server.

	Run a callback function when an event_out asynchronous event is
received from the server.

	The socket was closed unexpectedly.

In cases #2 and #3, a class that implements the UBFEventHandler
interface is used to define the action to be taken in those cases.

The HibariTest.java contains a sample implementation of callback
functions for asynchronous events. A real application would probably
want to do something much more helpful than this example does.

public static class FooHandler implements UBFEventHandler {
 public FooHandler() {
 }
 public void handleEvent(UBFClient client, UBFObject event) {
 System.out.println("Hey, got an event: " + event.toString());
 }
 public void connectionClosed(UBFClient client) {
 System.out.println("Hey, connection closed, ignoring it\n");
 }
}

Tip

See xref:the-ubf-hibaritest-main-method[] for an example that uses
this FooHandler class.

[[using-ubf-python-client]]

Using the EBF Client Library for Python

The source code for the EBF client library for Python is included in
the UBF source repository at
link:http://github.com/ubf/ubf[http://github.com/ubf/ubf], in
the priv/python subdirectory.

NOTE: Recall that the EBF protocol is very closely related to UBF. The
only significant difference is the “layer 5” session protocol layer:
instead of using the UBF(A) protocol, the EBF (Erlang Binary Format)
protocol is used instead. See
xref:hibari-server-impl-of-ubf-proto-stack[] for more details.

In addition, you will need the “py_interface” package, developed by
Tomas Abrahamsson and others. “py-interface” is distributed under the
link:http://www.fsf.org/licensing/education/licenses/lgpl.html[GNU
Library General Public License]. A git repository is hosted at
repo.or.cz. To clone it and build it, use:

$ git clone git://repo.or.cz/py_interface.git
$ cd py_interface
$ autoconf
$./configure
$ make
$ pwd

Use the output of the last command, pwd, to remember the full
directory path to the “py-interface” library. The example below
assumes that path is /tmp/py-interface.

The pyebf.py file contains a small unit test that makes several
calls to the Hibari UBF contract’s do_req() command. The results
of (almost) every command are verified using the assert function.

env PYTHONPATH=/path/to/py_interface python pyebf.py

	Connect to the Hibari server on “localhost” TCP port 7580 and use
the UBF metaprotocol to switch to the gdss contract:

login
ebf.login('gdss', 'gdss_meta_server')

	Delete the key 'foo' from table tab1:

setup
req0 = (Atom('do'), Atom('tab1'), [(Atom('delete'), 'foo', [])], [], 1000)
res0 = ebf.rpc('gdss', req0)

	Get the key 'foo' from table tab1:

get - ng
req1 = (Atom('do'), Atom('tab1'), [(Atom('get'), 'foo', [])], [], 1000)
res1 = ebf.rpc('gdss', req1)
assert res1[0] == 'key_not_exist'

	Add the key 'foo' to table tab1. The do_req()
interface requires managing the timestamp integers explicitly by
the client; the timestamp 1 is used here:

add - ok
req2 = (Atom('do'), Atom('tab1'),
 [(Atom('add'), 'foo', 1, 'bar', 0, [])], [], 1000)
res2 = ebf.rpc('gdss', req2)
assert res2[0] == 'ok'

	Add the key 'foo' to table tab1:

add - ng
req3 = (Atom('do'), Atom('tab1'),
 [(Atom('add'), 'foo', 1, 'bar', 0, [])], [], 1000)
res3 = ebf.rpc('gdss', req3)
assert res3[0][0] == 'key_exists'
assert res3[0][1] == 1

	Get the key 'foo' from table tab1, verifying that the
timestamp is still 1 and value is still 'bar':

get - ok
req4 = (Atom('do'), Atom('tab1'), [(Atom('get'), 'foo', [])], [], 1000)
res4 = ebf.rpc('gdss', req4)
assert res4[0][0] == 'ok'
assert res4[0][1] == 1
assert res4[0][2] == 'bar'

	Set the key 'foo' from table tab1, using a new timestamp
2:

set - ok
req5 = (Atom('do'), Atom('tab1'),
 [(Atom('set'), 'foo', 2, 'baz', 0, [])], [], 1000)
res5 = ebf.rpc('gdss', req5)
assert res5[0] == 'ok'

	Get the key 'foo' from table tab1, verifying both the new
timestamp and new value:

get - ok
req6 = (Atom('do'), Atom('tab1'), [(Atom('get'), 'foo', [])], [], 1000)
res6 = ebf.rpc('gdss', req6)
assert res6[0][0] == 'ok'
assert res6[0][1] == 2
assert res6[0][2] == 'baz'

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Client API: Thrift

“TBF” is a link:https://github.com/apache/thrift[Thrift protocol]
defined by UBF contract xref:the-hibari-ubf-protocol-contract[].
This section attempts to describe the Hibari Thrift API which allows
users to access Hibari with Thrift clients in any Thrift supported
programming languages, and how to extend the API for application uses.

The Hibari Thrift API

The Hibari Thrift API is defined as Hibari Service in
link:./misc-codes/hibari.thrift[hibari.thrift]. At the time this API
was developed, only Thrift 0.4.0 is available to us. This version is
our first attempt to adopt Thrift. Some of the functions and options
are not yet supported.

Important

The Hibari Thrift API only supports Thrift 0.4.0 or above.

service Hibari {

 /**
 * Check connection availability / keepalive
 */
 oneway void keepalive()

 /**
 * Hibari Server Info
 */
 string info()

 /**
 * Hibari Description
 */
 string description()

 /**
 * Hibari Contract
 */
 string contract()

 /**
 * Add
 */
 HibariResponse Add(1: Add request)
 throws (1:HibariException ouch)

 /**
 * Replace
 */
 HibariResponse Replace(1: Replace request)
 throws (1:HibariException ouch)

 /**
 * Set
 */
 HibariResponse Set(1: Set request)
 throws (1:HibariException ouch)

 /**
 * Rename
 */
 HibariResponse Rename(1: Rename request)
 throws (1:HibariException ouch)

 /**
 * Delete
 */
 HibariResponse Delete(1: Delete request)
 throws (1:HibariException ouch)

 /**
 * Get
 */
 HibariResponse Get(1: Get request)
 throws (1:HibariException ouch)
 }

For each primitive utility function, it has exactly one input
parameter. The parameter is an object that has a name matching its
function. The object carries all mandatory and optional parameters to
Hibari. This object could also be used to implement micro-transactions
in the future.

Mapping UBF Contract Types to Thrift Types

You can find more details of the UBF / Thrift type conversion in
(link:https://github.com/ubf/ubf-thrift[UBF-Thrift]).

Mapping UBF Contract to Thrift Service

Mapping UBF types to thrift primitives is different from mapping UBF
contracts to service. Thrift mainly uses 2 different types to compose
a request (struct and field).

If you are using Thrift to generate client code, you probably don’t
need to worry about how the request being constructed. Visit
link:http://wiki.apache.org/thrift/ThriftGeneration[Thrift Wiki] for
the instruction to install Thrift and to generate client code. You
will also need link:./misc-codes/hibari.thrift[hibari.thrift] to get
started.

If you are interested in the UBF contract, the Hibari NTBF contract
can be found in the file of ntbf_gdss_plugin.con.

Examples of using a Thrift client

Once you get the generated code, connecting to Hibari is easy. For
example, adding the key 'fookey' to table tab1 with a value of
'Hello, world!' in the following 3 languages.

In Erlang:

-include("hibari_thrift.hrl").

% init
{ok, Client} = thrift_client:start_link("127.0.0.1", 7600, hibari_thrift),

% create the input parameter object
Request = #add{table=<<"tab1">>, key=<<"fookey">>, value=<<"Hello, world!">},

% send request
try
 HibariResponse = thrift_client:call(Client, 'Add', [Request]),
catch
 HibariException ->
 HibariException
end,

ok = thrift_client:close(Client).

In Java:

import com.hibari.rpc.*;

// init
TTransport transport = new TSocket("127.0.0.1", 7600);
TProtocol proto = new TBinaryProtocol(transport);
Hibari.Client client = new Hibari.Client(proto);
transport.open();

// create the input parameter object
Add request = new Add("tab1", ByteBuffer.wrap("fookey".getBytes()),
 ByteBuffer.wrap("Hello, world!".getBytes())))

// send request
try {
 HibariResponse response = client.Add(request);
} catch (HibariException e) {
 // ...
}

transport.close();

In python:

from hibari import Hibari

init
transport = TSocket.TSocket('localhost', 7600)
transport.setTimeout(None)
transport = TTransport.TBufferedTransport(transport)
protocol = TBinaryProtocol.TBinaryProtocol(transport)
client = Hibari.Client(protocol)
transport.open()

create the input parameter object
request = Add()
request.table = "tab1"
request.key = b"fookey"
request.value = b"Hello, world!"

send request
response = client.Add(request)

transport.close()

Mapping TBF Contract Responses From Thrift Client

TBF only responses one of two generic types to all functions in Hibari
Thrift API, HibariResponse or HibariException. One could expect a
HibariResponse in an any successful cases. Otherwise a
HibariException should be thrown.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Building Hibari from Source

This section describes the basic recipes to build the following items:

	Hibari Release Package

	Hibari Documentation

	Erlang/OTP System

Required Third Party Software

Before getting started, review this checklist of tools and
software. Please install and set up as needed.

Mandatory Items (Required for Building Hibari)

The following software is required in order to download Hibari and
build a release package:

	Git – http://git-scm.com/

	Must be version 1.5.4 or newer.

	1.7.3.4 is the version most recently tested for Hibari.

	If you haven’t yet done so, please configure your email address
and name for Git:

$ git config --global user.email "you@example.com"
$ git config --global user.name "Your Name"

	If you haven’t yet done so, you must sign up for a GitHub
account – https://github.com/

	Anonymous read-only access using the GIT protocol is default.

	Team members with read-write access: be sure to add your SSH
public key under your GitHub account.

	Python – http://www.python.org

	Required by Repo

	Must be version 2.4 or newer

	2.7 is the version most recently tested for Hibari.

Caution

Python 3.x might be too new.

	Repo – http://source.android.com/source/git-repo.html

	Install as follows:

$ mkdir -p ~/bin
$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

	The downloading and packaging process also uses Rebar
(https://github.com/basho/rebar/wiki) but this tool is included in
the Hibari Git repositories so you do not need to install it
separately.

	OpenSSL – http://www.openssl.org/

	Required for Erlang’s crypto module.

	Erlang/OTP – http://www.erlang.org/

	Must be version R16B01 or newer.
	17.4 is the version most recently tested for Hibari.

	For information on building Erlang/OTP from source, see
<<ErlangOTP>> in this document.

Optional Items (Required for Building Hibari’s Documentation)

The following software is required only if you want to build Hibari’s
documentation from source. Note that an online version of the
documentation is available at http://hibari.github.com/hibari-doc/.

	AsciiDoc – http://www.methods.co.nz/asciidoc/index.html
	Must be version 8.6.1 or newer
	8.6.4 is the version most recently tested for Hibari

	Plus the following support tools:
	ImageMagick – http://www.imagemagick.org/

	Graphviz – http://www.graphviz.org/

	Mscgen – http://www.mcternan.me.uk/mscgen/

	Dia – http://projects.gnome.org/dia/

	dblatex – http://dblatex.sourceforge.net/
	Optional for building a PDF version of Hibari’s documentation.

	w3m – http://w3m.sourceforge.net/
	Optional for building a text version of Hibari’s documentation.

Downloading Hibari

Follow these steps to download the Hibari repositories from GitHub.

	Create a working directory and retrieve the Hibari manifest files:

$ mkdir working-directory
$ cd working-directory
$ repo init -u git://github.com/hibari/manifests.git -m hibari-default.xml

Note

Your “Git” identity is needed during the repo init step. Please
enter the name and email of your GitHub account if you have one.
Team members having read-write access should use repo init -u
git@github.com:hibari/manifests.git -m hibari-default-rw.xml.

Tip

If you want to checkout the latest development version of Hibari,
please append `` -b dev`` to the repo init command.

	Download Hibari’s Git repositories:

$ Repo sync

After the repo sync, your working directory has the following structure:

<working-directory>
 |- hibari/
 |- .git/
 |- .gitignore
 |- Makefile
 |- dialyze-ignore-warnings.txt
 |- dialyze-nospec-ignore-warnings.txt
 |- lib/ <1>
 |- <application_name>/
 |- .git/
 |- .gitignore
 |- ebin/
 |- include/
 |- *.hrl
 |- priv/
 |- rebar.config
 |- src/
 |- <application_name>.app.src
 |- *.erl
 |- test/
 |- eunit/
 |- *.erl
 |- eqc/
 |- *.erl
 :
 |- rebar
 |- rebar.config
 |- rel/ <2>
 |- files/
 |- app.config
 |- erl
 |- hibari
 |- hibari-admin
 |- nodetool
 |- nodetool-admin
 |- vm.args
 |- hibari/
 :
 |- releases/
 |- <release_vsn>/
 :
 :
 :
 |- reltool.config
 |- hibari-doc/ <3>
 :
 |- manifests/ <4>
 :
 |- patches/ <5>
 :
 |- rebar/ <6>
 :
 |- .repo/
 :

<1> Applications
<2> Releases
<3> Documentation
<4> Manifests
<5> Patches
<6> Rebar

Building the Hibari Release Package

Follow these steps to build a Hibari release package.

	Building basic recipe:

$ cd working-directory/hibari
$ make

Tip

If the response is “make: erl: Command not found”, please make
sure Erlang/OTP is installed and “otp-installing-directory-name/bin”
is added to your $PATH environment.

	Release packaging basic recipe:

$ cd working-directory/hibari
$ make package

Note

A release package tarball “hibari-X.Y.Z-dev-ARCH-WORDSIZE.tgz”
and md5sum file “hibari-X.Y.Z-dev-ARCH-WORDSIZE-md5sum.txt” is written
into your working-directory. You can then use these files to perform a
single-node or multi-node Hibari installation as described in
<<getting-started>>.

[[HibariAsciiDoc]]

Building Hibari’s Documentation

Follow these steps to build Hibari’s documentation.

	Building Hibari’s “Guides” basic recipe:

$ cd working-directory/hibari-doc/src/hibari
$ make clean -OR- make realclean
$ make

	Building Hibari’s “Website” basic recipe:

$ cd working-directory/hibari-doc/src/hibari/website
$ make clean -OR- make realclean
$ make

Note

HTML documentation is written in the ”./public_html” directory.

Hibari’s documentation is authored using AsciiDoc and a few auxillary
tools:

	ImageMagick

	dblatex

	Dia

	Graphviz

	Mscgen

	w3m

Hibari’s documentation is generated with AsciiDoc and a manually
modified version of the a2x tool. A fake lang-ja.conf file can be
easily created by making a symlink to the lang-en.conf file.

diff -r -u 8.6.4-orig/bin/a2x.py 8.6.4/bin/a2x.py
--- 8.6.4-orig/bin/a2x.py 2011-04-24 00:50:26.000000000 +0900
+++ 8.6.4/bin/a2x.py 2011-04-24 00:35:55.000000000 +0900
@@ -156,7 +156,10 @@
 def shell_copy(src, dst):
 verbose('copying "%s" to "%s"' % (src,dst))
 if not OPTIONS.dry_run:
- shutil.copy(src, dst)
+ try:
+ shutil.copy(src, dst)
+ except shutil.Error:
+ return

 def shell_rm(path):
 if not os.path.exists(path):
 Only in 8.6.4/etc/asciidoc: lang-ja.conf

[[ErlangOTP]]

Building and Installing Erlang/OTP

Follow these steps to download and build Erlang/OTP from source, and
to install the system. These steps provide a basic recipe; not all
options are addressed.

Note

Please make sure to have the ‘openssl-devel’ package installed
on your system before configuring and building Erlang/OTP.

	Download the source code for your Erlang/OTP system:

$ cd working-directory
$ wget http://www.erlang.org/download/otp_src_R14B01.tar.gz

	Untar the source code for your Erlang/OTP system:

$ tar -xzf otp_src_R14B01.tar.gz

	Configure Erlang/OTP:

$ cd working-directory/otp_src_R14B01
$./configure --prefix=otp-installing-directory-name

	Build Erlang/OTP:

$ make

	Install Erlang/OTP:

$ sudo make install

Caution

Please make sure “otp-installing-directory-name/bin” is added
to your $PATH environment.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Contributing to Hibari

GitHub, Git, and Repo

to be added

List the working directories for all of Hibari’s “projects”:

$ repo forall -c "pwd"

Note

Each project has a corresponding Git repository and (default)
revision. Check the “manifests/hibari-default.xml” file for
details.

Start a new topic (e.g. new-topic-name) branch:

$ repo start new-topic-name `repo forall -c "pwd" | xargs echo`

Abandon an existing topic (e.g. topic-name) branch:

$ repo abandon topic-name `repo forall -c "pwd" | xargs echo`

Track and checkout the master branch:

$ repo forall -c "git branch --track master github/master"
$ repo forall -c "git checkout master"

Track and checkout the dev (i.e. Development) branch:

$ repo forall -c "git branch --track dev github/dev"
$ repo forall -c "git checkout dev"

Code, Branch, and Version Management

to be added

Documentation

to be added

Submitting Patches

to be added

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hibari System Administrator’s Guide (Hibari v0.1.11)

DRAFT - IN PROGRESS

Date: 2015/03/22

Revision: 0.5.4

Copyright (C) 2005-2015 Hibari developers. All rights reserved.

Table of Contents

	Introduction
	The Problem

	Key-Value Store

	Hibari’s Origins

	Summary of Hibari’s Main Features

	The “ACID vs. BASE” Spectrum and Hibari

	The CAP Theorem and Hibari

	Hibari’s Main Features in Broad Detail

	Building A Hibari Database

	Hibari Architecture
	Bricks, Physical and Logical

	The Admin Server Application

	Hibari System Information: Configuration Files, Etc.

	The Life of a (Logical) Brick

	Dynamic Cluster Reconfiguration

	The Partition Detector Application

	Backup and Disaster Recovery

	Hibari Application Logging

	Hardware and Software Considerations

	Administering Hibari Through the API
	brick_admin:add_table(stack, ChainList, Opts).

	.Create a new stack

	.Push an item onto a stack

	.Pop an item off a stack

	Item.

	.Data types for brick_admin:change_chain_length()

	.Data types for brick_admin:start_migration()

	(hibari1@bb3)63> OldFloatMap = brick_hash:chash_extract_new_float_map(OldGH).

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Introduction

Caution

This document is under re-construction – beware!

The Problem

There exists a dichotomy in modern storage products. Commodity storage
is inexpensive, but unreliable. Enterprise storage is expensive, but
reliable. Large capacities are present in both enterprise and
commodity class. The problem, then, becomes how to leverage
inexpensive commodity hardware to achieve high capacity enterprise
class reliability at a fraction of the cost.

This problem space has been researched extensively, especially in the
last few years: in academia, the commercial sector, and by open source
community. Hibari uses techniques and algorithms from this research
to create a solution which is reliable, cost effective, and scalable.

Key-Value Store

Hibari is key-value store. If a key-value store were represented as
an SQL table, it would be defined as:

[[sql-definition-key-value]]

SQL-like definition of a generic key value store

CREATE TABLE foo (
 BLOB key;
 BLOB value;
) PRIMARY KEY key;

In truth, each key stored in Hibari has three additional fields
associated with it. See xref:hibari-data-model[] and
link:hibari-contributor-guide.en.html[Hibari Contributor’s Guide] for
details.

[[hibari-origins]]

Hibari’s Origins

Hibari was originally written by Cloudian, Inc., formerly Gemini
Mobile Technologies, to support mobile messaging and email services.
Hibari was released outside of Cloudian under the Apache Public
License version 2.0 in July 2010.

Hibari has been deployed by multiple telecom carriers in Asia and
Europe. Hibari may lack some features such as monitoring, event and
alarm management, and other “production environment” support services.
Since telecom operator has its own data center support infrastructure,
Hibari’s development has not included many services that would be
redundant in a carrier environment.

We hope that Hibari’s release to the open source community will close
those functional gaps as Hibari spreads outside of carrier data
centers.

Summary of Hibari’s Main Features

	A Hibari cluster is a distributed system.

	A Hibari cluster is linearly scalable.

	A Hibari cluster is highly available.

	All updates are durable.

	All updates are strongly consistent.

	All client operations are lockless.

	A Hibari cluster’s performance is excellent.

	Multiple client access protocols are available.

	Data is repaired automatically after a server failure.

	Cluster configuration can be changed at any time.

	Data is automatically rebalanced.

	Heterogeneous hardware support is easy.

	Micro-transactions simplify creation of robust client applications.

	Per-table configurable performance options are available.

[[acid-base-hibari]]

The “ACID vs. BASE” Spectrum and Hibari

Important

We strongly believe that “ACID” and “BASE” properties exist on a
spectrum and are not exclusively one or the other (black-or-white)
properties.

Most database users and administrators are familiar with the acronym
ACID: Atomic, Consistent, Independent, and Durable. Now, consider an
alternative method of storing and managing data, BASE:

	Basically available

	Soft state

	Eventually consistent

For an
link:http://queue.acm.org/detail.cfm?id=1394128[exploration of ACID and BASE properties (at ACM Queue)], see:

BASE: An Acid Alternative
Dan Pritchett
ACM Queue, volume 6, number 3 (May/June 2008)
ISSN: 1542-7730
http://queue.acm.org/detail.cfm?id=1394128

When both strict ACID and strict BASE properties are placed on a
spectrum, they are at the opposite ends. However, a distributed
database system can fit anywhere in the middle of the spectrum.

A Hibari cluster lies near the ACID end of the ACID/BASE spectrum. In
general, Hibari’s design will always favors consistency and durability
of updates at the expense of 100% availability in all situations.

[[cap-theorem-and-hibari]]

The CAP Theorem and Hibari

Warning

Eric Brewer’s “CAP Theorem”, and its proof by Gilbert and Lynch, is
a tricky thing. It’s nearly impossible to cleanly apply the purity
of logic to the dirty world of real, industrial computing systems.
We strongly suggest that the reader consider the CAP properties as
a spectrum, one of balances and trade-offs. The distributed
database world is not black and white, and it is important to know
where the gray areas are.

See the
link:http://en.wikipedia.org/wiki/CAP_theorem[Wikipedia article about the CAP theorem]
for a summary of the theorem, its proof, and related links.

CAP Theorem (postulated by Eric Brewer, Inktomi, 2000)
Wikipedia
http://en.wikipedia.org/wiki/CAP_theorem

Hibari chooses the C and P of CAP. It utilizes chain replication
technique and it always guarantees strong consistency. Hibari also
includes an Erlang/OTP application specifically for detecting network
partitions, so that when a network partition occurs, the brick nodes
in the opposite side of the partition with the active master will be
removed from the chains to keep the strong consistency guarantee.

See xref:admin-server-and-network-partition[] for details.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hibari’s Main Features in Broad Detail

=== Distributed system

Multiple machines can participate in a single cluster. The maximum
size of a Hibari cluster has not yet been determined. A practical
limit of approximately 200-250 nodes is likely.

Any server node can handle any client request, forwarding a request to
the correct server node when necessary. Clients maintain enough state
to send their queries directly to the correct server node in all
common cases.

=== Scalable system

The total storage and processing capacity of a Hibari cluster
increases linearly as machines are added to the cluster.

=== Durable updates

Every key update is written and flushed to stable storage (via the
fsync() system call) before sending acknowledgments to the client.

=== Consistent updates

After a key’s update is acknowledged, no client in the cluster can see
an older version of that key. Hibari uses the “chain replication”
algorithm to maintain consistency across all replicas of a key.

All data written to disk include MD5 checksums; the checksums are
validated on each read to avoid sending corrupted data to the client.

[[lockless-client-api]]
=== Lockless client API

The Hibari client API requires that all operations (read queries
operations and/or update operations) be self-contained within a single
client request. Therefore, locks are not implemented because they are
not required.

Inside Hibari, each key-value pair also contains a ``timestamp’’
value. A timestamp is an integer. Each time the key is updated, the
timestamp value must increase. (This requirement is enforced by all
server nodes.)

In many database systems, if a client requires guarantees that a key has
not changed since the last time it was read, then the client acquires
a lock (or lease) on the key. In Hibari, the client’s update
specifies the timestamp of the last read attempt of the key:

	If the timestamp matches the server, the operation is permitted.

	If the timestamp does not match the server’s timestamp, then the
operation is not permitted, and the new timestamp is returned to the
client.

It is recommended that all Hibari nodes use NTP to synchronize their
system clocks. The simplest Hibari client API uses timestamps based
upon the OS system clock for timestamp values. This feature can be
bypassed, however, by using a slightly more complex client API.

However, Hibari’s overload detection and work-dumping algorithms will
use the OS system clock, regardless of which client API is used. All
system clocks, client and server, be synchronized to be within roughly
1 second of each other.

=== High availability

Each key can be replicated multiple times (configurable on a per-table
basis). As long as one copy of the key survives, all operations on
that key are permitted. A cluster can survive multiple cluster node
failures and still maintain full data integrity.

The cluster membership application, called the Hibari Admin Server,
runs as an active/standby application on one or more of the server
nodes. The Admin Server’s configuration and private state are also
maintained in Hibari server nodes. Shared storage such as NFS, shared
SCSI/Fibre Channel LUNs, or replicated block devices are not required.

If the Admin Server fails and is restarted on a standby node, the rest
of the cluster can continue normal operation. If another brick fails
while the Admin Server is restarting, then clients may see service
interruptions (usually in the form of timeouts) until the Admin Server
has finished restarting and can react to the failure.

=== Multiple Client Protocols

Hibari supports many client protocols for queries and updates:

	A native Erlang API, via Erlang’s native message-passing mechanism

	Amazon S3 protocol, via HTTP

	UBF, Joe Armstrong’s ``Universal Binary Format’’ protocol, via TCP

	UBF via several minor variations of TCP transport

	UBF over JSON-RPC, via HTTP

	JSON-encoded UBF, via TCP

Protocols under development:

	Memcached, via TCP

	UBF over Thrift, via TCP

	UBF over Protocol Buffers, via TCP

Most of the client access protocols are implemented using the
Erlang/OTP application behavior. By separating each access protocol
into separate OTP applications, Hibari’s packaging is quite flexible:
packaging can add or remove protocol support as desired. Similarly,
protocols can be stopped and started at runtime.

[[overview-high-performance]]
=== High performance

Hibari’s performance is competitive with other distributed,
non-relational databases such as HBase and Cassandra, when used with
similar replication and durability configurations. Despite the
constraints of durable writes and strong consistency, Hibari’s
performance can exceed those databases on some workloads.

IMPORTANT: The metadata of all keys stored by the brick, called the
``key catalog’‘, are stored in RAM to accelerate commonly-used
operations. In addition, non-zero values of the “expiration_time” and
non-empty values of “flags” are also stored in RAM (see
xref:sql-definition-hibari[]). As a consequence, a multi-million key
brick can require many gigabytes of RAM.

=== Automatic repair

Replicas of keys are automatically repaired whenever a cluster node
crashes and restarts.

=== Dynamic configuration

The number of replicas per key can be changed without service
interruption. Likewise, replication chains can be added or removed
from the cluster without service interruption. This permits the
cluster to grow (or shrink) as workloads change. See
xref:chain-migration[] for more details.

=== Data rebalancing

Keys will be automatically be rebalanced across the cluster without
service interruption. See xref:chain-migration[] for more details.

=== Heterogeneous hardware support

Each replication chain can be assigned a weighting factor that will
increase or decrease the percentage of a table’s key space relative to
all other chains. This feature can permit use of cluster nodes with
different CPU, RAM, and/or disk capacities.

=== Micro-Transactions

Under limited circumstances, operations on multiple keys can be given
transactional commit/abort semantics. Such micro-transactions can
considerably simplify the creation of robust applications that keep
data consistent despite failures by both clients and servers.

[[per-table-config-perf-options]]
=== Per-table configurable performance options

Each Hibari table may be configured with the following options to
enhance performance ... though each of these options has a
corresponding price to pay.

	RAM-based storage: All data (both keys and values) may be stored in
RAM, at the expense of increased RAM consumption.
Disk is used still used to log all updates, to protect against
a catastrophic power failure.

	Asynchronous writes: Use of the fsync() system call can be disabled
to improve performance, at the expense of data loss in a system
crash or power failure.

	Non-durable updates: All update logging can be disabled to improve
performance, at the expense of data loss when all nodes in a
replication chain crash.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Building A Hibari Database

=== Defining a Schema

Hibari is a key-value database. Unlike a relational DBMS, Hibari
applications do not need to create a schema. The only application
requirement is that all its tables be created in advance, see
xref:creating-new-tables[] below.

[[hibari-data-model]]
=== The Hibari Data Model

If a Hibari table were represented within an SQL database, it would
look something like this:

[[sql-definition-hibari]]
.SQL-like definition of a Hibari table
include::texts-src/hibari-sql-definition.txt[]

Hibari table names use the Erlang data type ``atom’‘. The types of
all key-related attributes are presented below.

.Types of Hibari table key-value attributes
include::texts-src/hibari-key-value-attrs.txt[]

include::texts-src/hibari-key-value-attrs-expl.txt[]

The practical constraints on maximum value blob size are affected by
total blob size and frequency of large blob access. For example,
storing an occasional 64MB value blob is different than a 100% write
workload of 100% 64MB value blobs. The Hibari client API does not
have a method to update or fetch less than the entire value blob, so a
brick can be blocked for many seconds if it tried to operate on (for
example) even a single 4GB blob. In addition, other processes can be
blocked by ‘busy_dist_port’ events while processing big value blobs.

=== Hibari’s Client Operations

Hibari’s basic client operations are enumerated below.

add:: Set a key/value/expiration/flags only if the key does not already exist.
delete:: Delete a key
get:: Get a key’s timestamp and value
get_many:: Get a range of keys
replace:: Set a key/value/expiration/flags only if the key does exist
set:: Set a key/value/expiration/flags
txn:: Start of a micro-transaction

Each operation can be accompanied by operation-specific flags. Some
of these flags include:

witness:: Do not return the value blob. (get, get_many)
must_exist:: Abort micro-transaction if key does not exist.
must_not_exist:: Abort micro-transaction if key does exist.
{testset, TS}:: Perform the action only if the key’s current timestamp
exactly matches TS. (delete, replace, set, micro-transaction)

For details of these operations and lesser-used per-operation flags,
see:

	xref:micro-transactions[]

	link:hibari-contributor-guide.en.html[Hibari Contributor’s Guide]

=== Indexes

Hibari does not support automatic indexing of value blobs. If an
application requires indexing, the application must build and maintain
those indexes.

[[creating-new-tables]]
=== Creating New Tables

New tables can be created by two different methods:

	Via the Admin Server’s status server. Follow the “Add a table” link
at the bottom.

	Using the Erlang shell.

For details on the Erlang shell API and detailed explanations of the
table options presented in the Admin server’s HTTP interface, see the
link:hibari-contributor-guide.en.html[Hibari Contributor’s Guide]

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hibari Architecture

From a logical point of view, Hibari’s architecture has three layers:

	Top layer: consistent hashing

	Middle layer: chain replication

	Bottom layer: the storage brick

This section discusses each of these major layers in detail, starting
from the bottom and working upward.

.Logical architecture diagram; physical hosts/bricks are color-coded with 5 colors
svgimage::images/logical-architecture1[align=”center”, scaledwidth=”80%”]

.Logical architecture diagram, alternative perspective
svgimage::images/logical-architecture-alt[align=”center”, scaledwidth=”80%”]

Bricks, Physical and Logical

The word “brick” has two different meanings in a Hibari system:

	An entire physical machine that has Hibari software installed,
configured, and (hopefully) running.

	A logical software entity that runs inside the Hibari application
that is responsible for managing key-value pairs.

[[the-physical-brick]]

The physical brick

The phrase “physical brick” and “machine” are interchangeable, most of
the time. Hibari is designed to react correctly to the failure of any
part of the machine that the Hibari application is running:

	disk

	power supply

	CPU

	network

Hibari is designed to take advantage of low-cost, off-the-self
commodity servers.

A physical brick is the basic unit of failure. Data replication (via
the chain replication algorithm) is responsible for protecting data,
not redundant equipment such as dual power supplies and RAID disk
subsystems. If a physical brick crashes for any reason, copies of
data on other physical bricks can still be used.

It is certainly possible to decrease the chances of data loss by using
physical bricks with more expensive equipment. Given the same number
of copies of a key-value pair, the chances of data loss are less if
each brick has multiple power supplies and RAID 1/5/6/10 disk. But
risk of data loss can also be reduced by increasing the number of data
replicas (“chain length”) using cheaper, non-redundant server
hardware.

The logical brick

A logical brick is a software entity that runs within a Hibari
application instance on a physical brick. A single Hibari physical
brick can support dozens or (potentially) hundreds of logical bricks,
though limitations of CPU, RAM, and/or disk capacity can impose a
smaller limit.

A logical brick maintains RAM and disk data structures to store a
collection of key-value pairs. The keys are maintained in
lexicographic sorting order.

The replication technique used by Hibari, chain replication, maintains
identical copies of key-value pairs across multiple logical bricks.
The number of copies of a key-value pair is exactly equal to the
length of the chain. See the next subsection below for more details.

It is possible to configure Hibari to place all of the logical bricks
for the same chain onto the same physical brick. This practice can be
useful in a developer’s environment, but it is impractical for
production networks: such a configuration does not have any physical
redundancy, and therefore it poses a greater risk of data loss.

[[write-ahead-logs]]

Write-Ahead Logs

By default, all logical bricks will record all updates to a
write-ahead log. Used by many database systems, a write-ahead log
(WAL) appears to be an infinitely-sized log where all important events
(e.g. all write and delete operations) are appended to the end of the
log. The log is considered write-ahead if a log entry is written
prior to any significant processing by the application.

[[write-ahead-logs-in-hibari]]

Write-ahead logs in the Hibari application

Two types of write-ahead logs are used by the Hibari application.
These logs cooperate with each other to provide several benefits to
the logical brick.

There are two types of write-ahead logs:

	The shared common log. This single write-ahead log instance provides
durability guarantees to all logical bricks within the server node
via the fsync() system call.

	Individual private logs. Each logical brick maintains its own private
write-ahead log instance. All metadata regarding keys in the
logical brick are stored in the logical brick’s private log.

All updates are written first to the common log, usually in a
synchronous manner. At a later time, update metadata is lazily copied
from the common log to the corresponding brick’s private log.
Value blobs (for bricks that store value blobs on disk)
will remain in the common log and are managed by
the scavenger, see xref:scavenger[].

svgimage::images/private-and-common-logs[align=”center”, scaledwidth=”80%”]

[[two-wal-types]]

Two types of write-ahead logs

The two log types cooperate to support a number of useful properties.

	Data durability in case of system crash or power failure. All
synchronous writes to the ``common log’’ are guaranteed to be
flushed to stable storage.

	Performance enhancement by limiting fsync() usage. After a
logical brick writes data to the common log, it will request an
fsync(). The common log will combine fsync() requests from
multiple bricks into a single system call.

	Performance enhancement at logical brick startup. A brick’s private
log stores only that bricks key metadata. Therefore, at startup
time, the logical brick does not scan data maintained by other
logical bricks. This can be a very substantial time savings as the
amount of metadata managed by all logical bricks grows over time.

	Performance enhancement by separating synchronous writes from
asynchronous writes. If the common log’s storage is on a separate
device, e.g. a write-optimized flash memory block device, then all
of the fsync() calls can finish much faster. During later
processing of the asynchronous/lazy copying of key metadata from the
common log to individual private logs can take advantage of OS dirty
page write coalescing and other I/O optimizations without
interference by fsync(). These copies are performed roughly once
per second.

[[wal-dirs-and-files]]

Directories and files used by write-ahead logs

Each write-ahead log is stored on disk as a collection of large files
(default = 100MB each). Each file in the log is identified by a log
sequence number and is called a log sequence file.

Log sequence files are append-only and are never written again.
Consequently, data in a log sequence file is never overwritten. Any
disk space reclaimed by checkpoint and scavenger operations is done by
copying data from old log sequence files and appending to new log
sequence files. Once the new log sequence file(s) is flushed to
stable storage, the old log sequence file(s) can be deleted.

When a log sequence file reaches its maximum size, the current log
file is closed and a new one is opened with a monotonically increasing
log serial number.

All log files for a write-ahead log are grouped under a single
directory called, hlog.{log-name}, where {log-name} is the
name of the brick or of the common log. These directories are stored
under the var/data subdirectory of the application’s installation
path, /usr/local/TODO/TODO/var/data (by default).

The maximum log file size (brick_max_log_size_mb in the
central.conf file) is advisory only and is not enforced as a hard
limit.

Reclaiming disk space used by write-ahead logs

In practice, infinite storage is not yet available. The Hibari system
uses two mechanisms to reclaim unused disk space:

	The checkpoint mechanism, see xref:checkpoints[].

	The scavenger mechanism, see xref:scavenger[].

Write-ahead log serial numbers

Each item written in a write-ahead log is assigned a serial number.
If the brick is in standalone or head roles, then the serial
number will be assigned by that brick. For downstream bricks, the
serial number assigned by the head brick will be used.

The serial number mechanism is used to ensure that a single unique
ordering of log items will be written to each brick log. In certain
failure cases, log items may be re-sent down the chain a second time,
see xref:failure-middle-brick[].

// JWN: Does the above mechanism “to ensure that a single unique ordering”
// applies to both common log and private log?

[[chains]]
=== Chains

A chain is the unit of data replication used by the
link:http://www.usenix.org/events/osdi04/tech/renesse.html[``chain replication’’ technique as described in this paper]:

Chain Replication for Supporting High Throughput and Availability
Robbert van Renesse and Fred B. Schneider
USENIX OSDI 2004 conference proceedings
http://www.usenix.org/events/osdi04/tech/renesse.html

Data replication algorithms can be separated into two basic families:

	State machine replication

	Quorum replication

The chain replication algorithm is from the state machine family of
replication algorithms. It is a variation of the familiar
``master/slave’’ replication algorithm, where all updates are sent to
a master node and then copies are sent to zero or more slave nodes.

Chain replication requires a very specific ordering of nodes (which
store copies of data) and the messages passed between them. The
diagram below depicts the “key update” message flow in a chain of
length three.

[[diagram-write-path-3]]
.Message flow in a chain for a key update
svgimage::images/write-path-3[align=”center”, scaledwidth=”80%”]

If a chain is of length one, then the same brick assumes both ``head’’
and ``tail’’ roles simultaneously. In this case, the brick is called
a ``standalone’’ brick.

.Message flow for a key update to a chain of length 1
svgimage::images/write-path-1[align=”center”, scaledwidth=”30%”]

To maintain the property strong consistency, a client must read data
from the tail brick in the chain. A read processed by any other brick
member would permit the client to read an update that has not yet been
processed by all bricks and therefore could result in a strong
consistency violation. Such a violation is frequently called a
``dirty read’’ in other database systems.

.Message flow for a read-only key query
svgimage::images/read-path-3[align=”center”, scaledwidth=”80%”]

[[bricks-outside-chain-replication]]
==== Bricks outside of chain replication

During Hibari’s development, we encountered a problem of managing the
state required by the Admin Server. If data managed by chain
replication requires the Admin Server to be running, how can the Admin
Server read its own data? There is a ``chicken and the egg’’
dependency problem that must be solved.

// JWN: Why wasn’t Mnesia used for the Admin Server’s storage
// implementation?

The solution is simple: do not use chain replication to manage the
Admin Server’s data. Instead, that data is replicated using a simple
``quorum replication’’ technique. These bricks all have names starting
with the string “bootstrap”.

A brick must be in ``standalone’’ mode to answer queries when it is
used outside of chain replication. See xref:brick-roles[] for details
on the standalone role.

=== Tables

A table is thing that divides the key namespace within Hibari. If you
need to have two different keys called “foo” but have different
values, you store each “foo” key in a separate table. The same is
true in other database systems.

Hibari’s implementation uses one or more replication chains to store
the data for one table.

.Relationship between tables, chains, and bricks.
svgimage::images/table-chain-brick[align=”center”, scaledwidth=”70%”]

[[micro-transactions]]
=== Micro-Transactions

In a single request, a Hibari client may send multiple update
operations to the cluster. The client has the option of requesting
``micro-transaction’’ semantics for those updates: if there are no
errors, then all updates will be applied atomically. This behaves
like the ``transaction commit’’ behavior supported by most relational
databases.

On the other hand, if there is an error while processing one of the
update operations, then all of update operations will fail. This
behaves like the ``transaction abort’’ behavior supported by most
relational databases.

Unlike most relational databases, Hibari does not have a transaction
manager that can coordinate ACID semantics for arbitrary read and
write operations across any row in any table. In fact, Hibari has no
transaction manager at all. For this reason, Hibari calls its limited
transaction feature ``micro-transactions’‘, to distinguish this
feature from other database systems.

Hibari’s micro-transaction support has two important limitations:

	All keys involved in the transaction must be stored in the same
replication chain (and therefore by the same brick(s)).

	Operations within the micro-transaction cannot see updates by other
operations within the the same micro-transaction.

.Four keys in the “footab” table, distributed across two chains of length three.
[id=”footab-example”]
svgimage::images/micro-transaction-example[align=”center”, scaledwidth=”70%”]

In the diagram above, a micro-transaction can be permitted if it
operates on only the keys “string1” & “string4” or only the keys
“string2” and “string3”. If a client were to send a micro-transaction
that operates on keys “string1” and “string3”, the micro-transaction
will be rejected: key “string3” is not stored by the same chain as the
key “string1”.

.Valid micro-transaction: all keys managed by same chain
[id=”valid-utxn”]

	[txn,

	{op = replace, key = “string1”, value = “Hello, world!”},
{op = delete, key = “string4”}

]

.Invalid micro-transaction: keys managed by different chains
[id=”invalid-utxn”]

	[txn,

	{op = replace, key = “string1”, value = “Hello, world!”},
{op = delete, key = “string2”}

]

The client does not have direct control over how keys are distributed
across chains. When a table is defined and created, its configuration
specifies the algorithm used to map a {TableName, Key} pair to a
specific chain.

// JWN: This might be a good place to briefly explain the benefits of
// using a key prefix and how it is beneficial to (some) applications.

NOTE: See
link:hibari-contributor-guide.en.html#add-a-new-table[Hibari Contributor’s Guide,
“Add a New Table” section]
for more information about table configuration.

=== Distribution: Workload Partitioning and Fault Tolerance

[[consistent-hashing-example]]
==== Partitioning by consistent hashing

To spread computation and storage workloads across all servers in the
cluster, Hibari uses a technique called ``consistent hashing’‘. This
hashing technique attempts to distribute a table’s key space evenly
across all chains used by that table.

IMPORTANT: The word ``consistent’’ has slightly different meanings
relative to ``consistent hashing’’ and ``strong consistency’‘. The
consistent hashing algorithm is a commonly-used algorithm for key ->
storage location calculations. Consistent hashing does not affect the
``eventual consistency’’ or ``strong consistency’’ semantics of a
database system.

See the xref:footab-example[] for an example of a table with two
chains.

See
link:hibari-contributor-guide.en.html#add-a-new-table[Hibari Contributor’s Guide,
“Add a New Table” section]
for details on valid options when creating new tables.

===== Consistent hashing algorithm

Hibari uses the following steps in its consistent hashing algorithm
implementation:

	Calculate the ``hashing prefix’‘, using part or all of the key as
input to the next step.

	** This step is configurable, using built-in functions or by providing

	a custom implementation function.

** Built-in prefix functions:
* Null: use entire key
* Fixed length, e.g. 4 byte or 8 byte constant length prefix.
*** Variable length: use separator character ‘/’ (configurable)

such that hash prefix is found between the first two (also
configurable) ‘/’ characters. E.g. If the key is /user/bar,
then the string /user/ is used as the hash prefix.

	Calculate the MD5 checksum of the hashing prefix and then convert
the result to the unit interval, 0.0 - 1.0, using floating point
arithmetic.

	Consult the unit interval -> chain map to calculate the chain name.

	** This map contains a tree of {StartValue, EndValue, ChainName} tuples.

	For example, {0.0, 0.5, footab_ch1} will map the interval
(0.0, 0.5] to the chain named footab_ch1.

	*** The mapping tree’s construction is affected by the chain weighting

	factor. The weighting factor allows some chains to store more
than other chains.

	Use the operation type to calculate the brick name.

** For read-only operations, choose the tail brick.
** For update operations, choose the head brick.

===== Consistent hashing algorithm use within the cluster

	Hibari clients use the algorithm to calculate which chain must

handle operations for a key. Clients obtain this information via
updates from the Hibari Admin Server. These updates allow the client
to send its request directly to the correct server in most use cases.

	Servers use the algorithm to verify that the client’s calculation

was correct.
** If a client sends an operation to the wrong brick, the brick will
forward the operation to the correct brick.
** If a client sends a list of operations such that some bricks are
stored on the brick and other keys are not, an error is returned to
the client. Micro-transactions are not supported across chains.

===== Changing consistent hashing configuration dynamically

Hibari’s Admin Server will allow changes to the consistent hashing
algorithm without service interruption. Such changes are applied on a
per-table basis:

	Adding or removing chains to the unit interval -> chain map.

	Modifications of the chain weighting factor.

	Modifying the key -> hashing prefix calculation function.

See the xref:chain-migration[] section for more information.

==== Multiple replicas for fault tolerance

For fault tolerance, data replication is required. As explained in
xref:chains[], the basic unit of failure is the brick. The chain
replication algorithm will maintain replicas of keys in a strongly
consistent manner across all bricks: head, middle, and tail bricks.

To be able to tolerate F failures without data loss or service
interruption, each replication chain must be at least F+1 bricks
long. This is in contrast to quorum replication family algorithms,
which typically require 2F+1 replica bricks.

// JWN: Would it be helpful to put a note that typically “3” is the
// recommended number of replicas?

===== Changing chain length configuration dynamically

Hibari’s Admin Server will allow changes to a chain’s length without
service interruption. Such changes are applied on a per-chain basis.
See the xref:chain-length-change[] section for more information.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

The Admin Server Application

The Hibari ``Admin Server’’ is an OTP application that runs in an
active/standby configuration within a Hibari cluster. The Admin
Server is responsible for:

	Monitoring the health of each brick in the cluster,
see xref:brick-lifecycle-fsm[].

	Monitoring the status of each chain in the cluster,
see xref:chain-lifecycle-fsm[].

	Managing administrative changes of chain -> brick mappings,
see xref:chain-length-change[].

	Managing data rebalancing, see xref:chain-migration[].

	Communicating cluster status to Hibari client nodes.

	Other administrative tasks, such as the creation of new tables.

Only one instance of the Admin Server is permitted to run within the
cluster at a time. The Admin Server runs in an ``active/standby’’
configuration that is used in many high-availability clustered
applications. The nodes that are eligible to participate in the
active/standby configuration are configured via the main Hibari
configuration file; see xref:admin-server-in-central-conf[] and
xref:central-conf-parameters[] for more details.

=== Admin Server Active/Standby Implementation

The active/standby application failover is handled by the Erlang/OTP
application controller. No extra third-party software is required.
See Chapter 7, “Applications”, and Chapter 9, “Distributed
Applications”, in the “OTP Design Principles User’s Guide” at
http://www.erlang.org/doc/design_principles/distributed_applications.html.

[[bootstrap-bricks]]
=== Admin Server’s Private State: the Bootstrap Bricks

On each active and standby node, there is a hint file called
Schema.local which contains the name of the ``bootstrap bricks’‘.
These bricks operate outside of the chain replication algorithm to
provide redundant, persistent state for the Admin Server application.
See xref:bricks-outside-chain-replication[] for a short summary of
standalone bricks.

All of the Admin Server’s private state is stored in the bootstrap
bricks. This includes:

	All table definitions and their configuration, e.g. consistent
hashing parameters.

	Status of all bricks and all chains.

	Operational history of all bricks and all chains.

With the help of the Erlang/OTP application controller and the Hibari
Partition Detector application, only a single instance of the Admin
Server is permitted to run at any one time. That single application
instance has full control over the data stored in the bootstrap bricks
and therefore does not have to manage concurrent updates to bootstrap
brick data.

=== Admin Server Crash and Restart

When the Admin Server application is stopped (e.g. node shutdown) or
crashes (e.g. software bug, power failure), all of the tasks outlined
at the beginning of xref:admin-server-app[] are halted. In theory,
the 20-30 seconds that are required for the Admin Server to restart
could mean 20-30 seconds of negative service impact to Hibari clients.

In practice, however, Hibari clients almost never notice when an Admin
Server instance crashes and restarts. Hibari clients do not need the
Admin Server when the cluster is stable. The Admin Server is only
necessary when the state of the cluster changes. Furthermore, as far
as clients are concerned, clients are only affected when bricks crash.
Other cluster change events, such as when chain replication repair
finished, do not directly impact clients and thus can wait for the
Admin Server to finish restarting.

A Hibari client will only notice an Admin Server crash if another
logical brick crashes while the Admin Server is temporarily out of
service. The reason is due to the nature of the Admin Server’s
responsibilities. When chain is broken by a brick failure, the
remaining bricks must have their roles reconfigured to put the chain
back into full service. The Admin Server is the only automated entity
that is permitted to change the role of a brick. For more details,
see:

	xref:brick-lifecycle-fsm[]

	xref:chain-lifecycle-fsm[], and

	xref:chain-repair[].

[[admin-server-and-network-partition]]
=== Admin Server and Network Partition

One feature of the Erlang/OTP application controller is that it is not
robust in event of a network partition. To prevent multiple Admin
Server apps running simultaneously, another application is bundled
with Hibari: the Partition Detector. See xref:partition-detector[]
for an overview and explanation of the ‘A’ and ‘B’ physical networks.

As described briefly in xref:cap-theorem-and-hibari[], Hibari does
support the “Partition tolerance” aspect of Eric Brewer’s CAP theorem.
More specifically, if a network partition occurs, and a Hibari cluster
is split into two or more pieces, not all clients on both/all sides of
the network partition will be able to access Hibari services.

For the sake of discussion, we assume the cluster has been split into
two fragments by a single partition, though any number of fragments may
happen in real use. We also assume that nodes on both sides of the
partition are configured in standby roles for the Admin Server.

If a network partition event happens, the following events will soon
follow:

	The OTP application controller for some/all
central.conf-configured nodes will notice that communication with
the formerly active Admin Server is now impossible.

	Using internal logic, each application controller will make a
decision of which standby node should move to active status.

	Each active status node will start an instance of the Admin Server.

Note that all steps above will happen in parallel on nodes on both
sides of the partition. If this situation is permitted to continue,
the invariant of “Admin Server may only run on one node at a time”
will be violated. However, with the help of the Partition Detector
application, multiple Admin Server instances can be detected and
halted.

UDP broadcasts on the ‘A’ and ‘B’ networks can help the Admin Server
determine if it was restarted due to an Admin Server crash or by a
network partition. In case of a network partition on network ‘A’, the
broadcasts on network ‘B’ can indicate that another Admin Server
process remains alive.

If multiple Admin Server instances are detected, the following logic
is used:

	If an Admin Server is in its “running” phase, then any other any
Admin Server instance that is still in its “initialization” phase
will halt.

	If multiple Admin Server instances are all in the “initialization”
phase, then only the Admin Server instance with the smallest name
(in lexicographic sorting order) is permitted to run: all other
instances will halt.

==== Importance of two physically separate networks

IMPORTANT: It is possible for both the ‘A’ and ‘B’ networks to
partition simultaneously. The Admin Server and Partition Detector
applications cannot always correctly react to such events. It is
extremely important that the ‘A’ and ‘B’ networks be separate physical
networks, including: separate physical network interfaces on each
brick, separate cabling, separate network switches, and all other
network-related equipment also be physically separate.

It is possible to reduce the reliance on multiple physical networks
and the Partition Detector application, but such techniques have not
been added to Hibari yet. Until an alternative network partition
mitigation mechanism is implemented, we strongly recommend the proper
configuration of the Partition Detector app and all of its hardware
requirements.

=== Admin Server, Network Partition, and Client Access

When a network partition event occurs, there are two cases that affect
a client’s ability to work with the cluster.

	The client machine is on the same side of the partition as the Admin
Server.

	The client machine is on the opposite side of the partition as the
Admin Server.

If the client machine is on the same side of the partition, the client
may see no interruption of service at all. If the Admin Server is
restarted in reaction to the partition event, there may be a small
window of time (e.g. 20-30 seconds) where requests might fail because
the Admin Server has not yet reconfigured chains on this side of the
partition.

If the client machine is on the opposite side of the partition, then
the client will not have access to the Admin Server and may not have
access to properly configured chains. If a chain lies entirely
entirely on the same side of the partition as the client, then the
client can continue to use that chain successfully. However, any
chain that is “cut in two” by the partition cannot support updates by
any client.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hibari System Information: Configuration Files, Etc.

Hibari’s system information is stored in one of two places. The first
is the application configuration file, central.conf. By default,
this file is stored in TODO/{version number}/etc/central.conf.

The second location is within Hibari server nodes themselves. This
kind of configuration, stored inside the “bootstrap” bricks, makes it
easy to share data with all nodes in the cluster.

Many of configuration values in central.conf will be the same on all
nodes in a Hibari cluster. Given this reality, why not store those
items in Hibari itself? The biggest problem comes when the
application is first starting. See
xref:bricks-outside-chain-replication[] for an overview of why it
isn’t easy to store all configuration data inside Hibari itself.

In the future, it’s likely that many of the configuration items in the
central.conf file will move to storage within Hibari itself.

=== central.conf File Syntax and Usage

Each line of the central.conf file has the form

parameter: value

where parameter is the name of the configuration option being set and
value is the value that the configuration option is being set to.

Valid data types for configuration settings are INT (integer), STRING
(string), and ATOM (one of a pre-defined set of option names, such as
on or off). Apart from data type restrictions, no further valid
range restrictions are enforced for central.conf parameters.

All time values in central.conf (such as delivery retry intervals or
transaction timeouts) must be set as a number of seconds.

Blank lines and lines beginning with the pound sign (#) are ignored.

IMPORTANT: To apply changes that you have made to the central.conf
file, you must restart the server. There are exceptions to this rule,
but it’s one of the cleanup/janitor tasks to access
central.conf using a standard set of APIs, e.g. always use the
gmt_config_svr API.

[[central-conf-parameters]]
=== Parameters in the central.conf File

A detailed explanation of each of the items in central.conf can be
found at
link:../misc-files/central-conf.pdf[Hibari central.conf Configuration Guide].

=== Admin Server Configuration

Configuration for the Hibari ``Admin Server’’ is stored in three
places:

. The central.conf file
. The Schema.local file
. Inside the ``bootstrap’’ bricks

[[admin-server-in-central-conf]]
==== Admin Server entries in the central.conf file

The following entries in the central.conf file are used by the
Hibari Admin Server:

	admin_server_distributed_nodes

	** This option specifies which nodes in the Hibari cluster are

	eligible to run the Admin Server. Hibari server nodes not included
in this list cannot run the Admin Server.

	** Active/standby service is provided by the Erlang/OTP platform’s

	application management facility.

	The Schema.local file

	** This file provides a list of {logical brick, Hibari server node name}

	tuples that store the Admin Server’s private state. Each brick
name in this list starts with the prefix bootstrap_copy followed
by an integer.

	The ``bootstrap’’ bricks

	** Each of these bricks store an independent copy of all Hibari

	cluster state: table definitions, table -> chain mappings,
start & stop history, etc.

	** Data in each of the bootstrap bricks is not maintained by chain

	replication. Rather, quorum-style replication is used.
See xref:bricks-outside-chain-replication[].

=== Configuration Not Stored in Editable Config Files

All table and chain configuration parameters are stored within the
Admin Server’s ``schema’‘. The schema contains information on:

	Table names and options (e.g. blob values stored in RAM or on disk,
sync/async disk logging)

	Table -> chain mappings

	Chain -> brick mappings

Much of this information can be seen in HTML form by pointing a Web
browser at TCP port 23080 (default) of any Hibari server node. For
example:

	.Admin Server Top-Level Status & Admin URL

	http://hibari-server-node-hostname:23080/

Your Web browser should be redirected automatically to the Admin
Server’s top-level status & admin page.

NOTE: The APIs that expose this are, for the most part, already
written. We need more “friendly” wrapper funcs as part of the “try
this first” set of APIs for administration.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

The Life of a (Logical) Brick

All logical bricks within a Hibari cluster go through the same set of
lifecycle events. Each is described in greater detail in this
section.

	Brick initialization and operation states, described by a finite
state machine.

	Brick roles within chain replication, also described by a finite
state machine.

	Periodic housekeeping tasks performed by logical bricks and their
internal support services, e.g. checkpoints and the ``scavenger’‘.

[[brick-lifecycle-fsm]]
=== Brick Lifecycle Finite State Machine

The lifecycle of each Hibari logical brick goes through a set of
states defined by a finite state machine (OTP gen_fsm behavior) that
is executed by a process within the Admin Server application.

.Logical brick lifecycle finite state machine
svgimage::images/brick-fsm[align=”center”]

.Logical brick lifecycle FSM states
unknown;;

This is the initial state of the FSM. Because the Admin Server may
crash or be restarted at any time, this state is used by the Admin
Server when it has not been running long enough to determine the
state of the logical brick.

	pre_init;;

	A brick moves itself to this state when it has finished scanning its
private write-ahead log (see xref:write-ahead-logs[]) and therefore
knows the state of all keys that it manages.

	repairing;;

	In chain replication, the repairing state is used to synchronize a
a newly started/restart brick with the rest of the chain. At the
end of this state, the brick is 100% in sync with all other active
members of the chain. Repair is initiated by the Admin Server’s
chain monitor that is responsible for the chain.

	ok;;

	The brick moves itself to this state when repair has finished. The
brick is now in service and capable of servicing Hibari client
requests. Client requests will be rejected if the brick is in any
other state.
* If managed by chain replication, this brick is eligible to be put

into service as a full member of a replication chain.
See xref:brick-roles[].

	If managed by quorum replication, some external entity must change
the logical brick’s state from pre_init -> ok. Hibari’s Admin
Server automates this task for the `bootstrap_copy`* bricks.
The present implementation of the Admin Server does not manage
quorum replication bricks outside of the Admin Server’s private
use.

	disk_error;;

	A disk error has occurred, for example a missing file or directory
or MD5 checksum error. Administrator intervention is required to
move a brick out of the disk_error state: shut down the entire
Hibari server, kill the logical brick manually, or use the
brick_chainmon:force_best_first_brick() function manually.

[[chain-lifecycle-fsm]]
=== Chain Lifecycle Finite State Machine

The chain FSM (OTP gen_fsm behavior) is executed by a process within
the Admin Server application. All state transitions are triggered by
changes in the state of each member bricks’ state, into or out of the
‘ok’ state. See xref:brick-lifecycle-fsm[] for details.

.Chain replication finite state machine
svgimage::images/chain-fsm[align=”center”]

.Chain lifecycle FSM states
unknown;;

The state of the chain is unknown. Information regarding chain members is
unavailable. Because the Admin Server may
crash or be restarted at any time, this state is used by the Admin
Server when it has not been running long enough to determine the
state of the chain.
It is possible that the chain was in degraded or healthy state
before the crash and therefore Hibari client operations may be
serviced while in this state.

	unknown_timeout;;

	This intermediate state is used by the Admin Server before moving
automatically to another state.

	stopped;;

	All bricks in the chain are crashed or believed to have crashed.
Service to Hibari clients will be interrupted.

	degraded;;

	Some (but not all) bricks in the chain are in service. The Admin
Server will wait for another chain member to enter its pre_init
state before chain repair can start.

	healthy;;

	All bricks in the chain are in service.

[[brick-roles]]
=== Brick ``Roles’’ Within A Chain

Each brick within a chain has a role. The role will be changed by the
Admin Server whenever it detects that the chain’s state has changed.
These roles are:

	head;;

	The brick is first in the chain, i.e. at the ``head’’ of the chain’s
ordered list of bricks.

	tail;;

	The brick is last in the chain, i.e. at the ``tail’’ of the chain’s
ordered list of bricks.

	middle;;

	The brick is neither the ``head’’ nor ``tail’’ of the chain.
Instead, the brick is somewhere in the middle of the chain.

	standalone;;

	In a chain of length 1, the ``standalone’’ brick is a brick that
acts both as a ``head’’ and ``tail’’ brick simultaneously.

There is one additional attribute that is given to a brick in a
cluster. Its name ``official tail’‘.

	official tail;;

	The official tail brick has two duties for the chain:
* It handles read-only queries to the chain.
* It sends replies to the client for all update operations that are
sent to the head of the chain.

the chain. Hibari clients are not aware of “tail” bricks that are
undergoing repair. Any client request that is sent to a repairing
state brick will be rejected.

See xref:diagram-write-path-3[] for an example of a healthy chain of
length three.

[[brick-init]]
=== Brick Initialization

A logical brick does not maintain an on-disk data structure, such as a
binary tree or B-tree, to keep track of the keys it stores. Instead,
each logical brick maintains that metadata entirely in RAM.
Therefore, the only time that the metadata in the private write-ahead
log is ever read is at brick initialization time, i.e. when the brick
restarts.

The contents of the private write-ahead log are used to repopulate the
brick’s ``key catalog’‘, the list of all keys (and associated
metadata) stored by the brick.

When a logical brick is started, all of the log sequence files in
the private log are read, starting from the oldest and ending with the
newest. (See xref:wal-dirs-and-files[].) The total amount of data
required at startup can be quite small or it can be hundreds of
gigabytes. The factors that influence the amount of data in the
private log are:

	The total number of keys stored by the logical brick.

	** More keys means that the log sequence file created by a checkpoint

	operation will be larger.

	The size of the brick_check_checkpoint_max_mb configuration parameter
in the central.conf config file.

When the log scan is complete, construction of the brick’s in-RAM key
catalog is finished.

See xref:checkpoints[] for details on brick checkpoint operations.

[[chain-repair]]
=== Chain Repair

When a chain is in the degraded state, new bricks that have entered
their pre_init state can become eligible to join the chain. All
new bricks are added to the end of the chain and undergo the chain
repair process.

.Chain of length 2 in degraded state, a third brick under repair
svgimage::images/read-write-path-3-repair[align=”center”, scaledwidth=”80%”]

The protocol used between upstream and downstream bricks is an
iterative protocol that has two phases in a single iteration.

1. The upstream brick sends a subset of {Key, Timestamp} tuples
downstream.
* The downstream brick deletes keys from its key catalog that do not
appear in the upstream’s subset.
* The downstream brick replies with the list of keys that it does not
have or have older timestamps.
2. The upstream bricks sends full information (all key metadata and
value blobs) for all keys requested by the downstream in step #1.
* The downstream brick acknowledges the new/replacement keys.

When the repair is finished, the Admin Server will change the roles of
some/all chain members to make the repairing brick the new tail of the
chain.

Only one brick may be repaired at one time. In theory it is possible
to repair multiple bricks simultaneously, but the extra code
complexity that would be required to do so has been judged to be too
expensive (so far).

==== Chain reordering when moving from degraded -> healthy states

[[chain-reordering-middle-brick-fails]]
.Chain order after a middle brick fails and is repaired (but not yet reordered)
svgimage::images/chain-fail-repair-reorder[align=”center”, scaledwidth=”70%”]

After a middle brick fails and is repaired, the chain’s ordering is:
brick 1 -> brick 3 -> brick 2. According to the algorithm in the
original Chain Replication paper, the final chain ordering is
expected. The Hibari implementation adds another step: reordering the
chain.

For chains longer than length 1, when the Admin Server moves the chain
from degraded -> healthy state, the Admin Server will reorder the
the chain to match the schema’s definition for the healthy chain
order. The assumption is that the Hibari administrator wishes the
chain use a very specific order when it is in the healthy state.
For example, if the chain’s workload were extremely read-intensive,
the machine for logical brick #3 could have faster CPU or faster disks
than the other bricks in the chain. To take full advantage of the
extra capacity, the chain should be reordered as soon as possible.

However, it is not easy to reorder the chain. The replication of a
client update during the reordering could get lost and violate Hibari’s
strong consistency guarantees. The following algorithm is used to
preserve consistency:

	Set all bricks to read-only mode.

	Wait for all updates to sync to disk at each brick and to progress
downstream fully from head -> tail.

	Set brick roles to reflect the final desired order.

4. Set all bricks to read-write mode.
** Client do operations that contain updates will be resubmitted

(via the client-side API function brick_server:do()) to the
cluster.

Typically, executing this algorithm takes less than one second.
However, because the head brick is forced temporarily into read-only
mode, client update requests will be delayed until read-only mode is
turned off.

Client update requests submitted during read-only mode will be queued
by the head brick and will be processed when read-only mode is turned
off. Client read-only requests are not affected by read-only mode.

// JWN: I think it might be helpful to mention/ to explain (but maybe
// not here) that Client updates may actually persist even though the
// client stopped waiting and returned a timeout to the “application”.
// A Timeout on Client updates can not guarantee the change was
// applied or not applied to the Hibari tables.

[[checkpoints]]
=== Brick Checkpoint Operations

As updates are received by a brick, those updates are written to the
brick’s private write-ahead log. During normal operations, private
write-ahead log is write-only: the data there is only read at logical
brick initialization time.

The checkpoint operation is used to reclaim disk space in the brick’s
private write-ahead log. See xref:wal-dirs-and-files[] for a
description of log sequence files and xref:central-conf-parameters[]
for details on the central.conf configuration file.

.Brick checkpoint processing steps
1. When the total log size (i.e. total size of all log files in the

brick’s private log’s shortterm storage area) reaches the size of the
brick_check_checkpoint_max_mb parameter in central.conf, a
checkpoint operation is started.
* Assume that the current log sequence file number is N.

	Two log sequence files are created, N+1 and N+2.

	Checkpoint data is written to log sequence number N+1.

	New updates by clients and chain replication are written to log
sequence number N+2.

	Contents of the brick’s in-RAM key catalog are dumped to log
sequence file N+1, subject to the bandwidth constraint of the
brick_check_checkpoint_throttle_bytes configuration parameter.

	When the checkpoint is finished and flushed to disk, all log
sequence files with a number less than or equal to N are deleted.

IMPORTANT: Each logical brick will checkpoint itself as its private
log grows. It is possible that multiple logical bricks can schedule
checkpoint operations simultaneously. The bandwidth limitation of the
brick_check_checkpoint_throttle_bytes parameter is applied to the
sum of all writes by all checkpoint operations.

[[scavenger]]
=== The Scavenger

As described in xref:write-ahead-logs[], all updates from all logical
bricks are first written to the ``common log’‘. The most common of
these updates are:

	Metadata updates, e.g. key insert or key delete, by a logical brick.

	A new value blob associated with a metadata update such as a Hibari

client set operation.
** This type is only applicable if the brick is configured to store
value blobs on disk. This configuration is defined (by default) on a
per-table basis and is then propagated to the chain and brick level by
the Admin Server.

As explained in xref:write-ahead-logs[], the write-ahead log provides
infinite storage at a logical level. But in the physical level, disk
space must be reclaimed somehow. Because the common log is shared by
multiple logical bricks, the technique described in xref:checkpoints[]
cannot be used by the common log.

A process called the ``scavenger’’ is used to reclaim disk space in
the common log. By default, the scavenger runs at 03:00 daily. The
steps it executes are described below.

.Common log scavenger processing steps
1. For all bricks that store value blobs on disk, scan each logical
brick’s in-RAM key catalog to create a list of all value blob storage
locations.
2. Sort the value blob location list by log sequence number.
3. Identify all log sequence files with a “live data ratio” of at
least X percent (default = 90%, see
brick_skip_live_percentage_greater_than configuration parameter).
4. For all log files where live data ratio is less than *X*%, copy
value blobs to new log sequence files. This copying is limited by the
amount of bandwidth configured by brick_scavenger_throttle_bytes in
central.conf.
5. When all blobs have been copied out of an old log sequence file and
flushed to stable storage, update the storage locations in the in-RAM
key catalog, then delete the old log sequence file.

ifdef::theme[]
image:images/scavenger-techpubs.png[]
endif::theme[]
ifndef::theme[]
image:images/scavenger-techpubs.png[width=”65%”]
endif::theme[]

IMPORTANT: The value of the brick_skip_live_percentage_greater_than
configuration parameter determines how much additional disk space is
required to store X gigabytes of live data. If the parameter is
N, then 100-N percent of all common log disk space may be wasted
by storing dead data.

IMPORTANT: Additional disk space is required to log all updates that
are made after the scavenger has run. This includes space in the
common log as well as in each logical brick private logs (subject to
the general limit of the brick_check_checkpoint_max_mb configuration
parameter.

IMPORTANT: The current implementation of Hibari requires that
plenty of disk space _always_ be available for write-ahead logs and
for scavenger operations. We strongly recommend that the
brick_scavenger_temp_dir configuration item use a different file
system than the application_data_dir parameter. This directory
stores temporary files required for sorting and other operations that
would otherwise require large amounts of RAM.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Dynamic Cluster Reconfiguration

[[add-table]]
=== Adding a Table

A table can be added at any time, using either of two methods:

	Use the Admin Server’s HTTP service: follow the “Add a table” hyperlink
at the bottom of the top-level page.

	

	Use the brick_admin CLI interface at the Erlang shell. See

link:hibari-contributor-guide.en.html#add-a-new-table[Hibari Contributor’s Guide,
“Add a New Table” section].

[[remove-table]]
=== Removing a Table

NOTE: The current Hibari implementation does not support removing
a table.

In theory, most of the work of removing a table is already done:
chains that are abandoned after a migration are shut down
* Brick pinger processes are stopped.
* Chain monitor processes are stopped.
* Bricks are stopped.
* Brick data directories are removed.

All that remains is to update the Admin Server’s schema to remove
references to the table.

[[chain-length-change]]
=== Changing Chain Length (Changing Replication Factor)

The Hibari Admin Server manages each chain as an independent data
replication entity. Though Hibari clients view multiple chains that
are associated with a single table, each chain is actually independent
of the other chains. It is possible to change the length of one chain
without changing any others. For long term operation, such
differences do not make sense. But during short periods of cluster
reconfiguration, such differences are possible.

A chain’s length is determined by specifying a list of bricks that are
members of that chain. The order of the list specifies the exact
chain order when the chain is in the healthy state. By adding or
removing bricks from a chain definition, the length of the chain can
be changed.

A chain is defined by the Erlang 2-tuple of
{ChainName, ListOfBricks}, where each brick in ListOfBricks is a
2-tuple {BrickName, NodeName}. For example, a chain of length two
called footab_ch1 could be defined as:

{footab_ch1, [{footab1_ch1_b1, 'gdss1@box-a‘}, {footab1_ch1_b1, 'gdss1@box-b‘}]}

The current definition of all chains for table TableName can be
retrieved from the Admin Server using the
brick_admin:get_table_chain_list() function, for example:

%% Get a list of all tables currently defined.
> brick_admin:get_tables().
[tab1]

%% Get list of chains in ‘tab1’ as they are currently in operation.
> brick_admin:get_table_chain_list(tab1).
{ok,[{tab1_ch1,[{tab1_ch1_b1,’gdss1@machine-1‘},

{tab1_ch1_b2,’gdss1@machine-2‘}]},

	{tab1_ch2,[{tab1_ch2_b1,’gdss1@machine-2‘},

	{tab1_ch2_b2,’gdss1@machine-1‘}]}]}

This above chain list for table tab1 corresponds to the chain and
brick layout below.

.Table tab1: Two chains of length two across two Erlang nodes on two physical machines
svgimage::images/tab1-2x2[align=”center”, scaledwidth=”70%”]

NOTE: To change the definition of a chain, use the
change_chain_length/2 or change_chain_length/3 functions. For
documentation, see
link:hibari-contributor-guide.en.html#changing-chain-length[Hibari Contributor’s Guide,
“Changing Chain Length” section]

NOTE: When specifying a new chain definition, at least one brick from
the current chain must be included.

// JWN: Is it dangerous to allow an admin the opportunity to NOT SPECIFY the head
// of the chain in the new chain definition or to SPECIFY only a brick
// that is under repair? I guess I see an opportunity for some
// “dynamic” (and not just static) pre-conditions that should/could be
// checked FIRST before starting to execute the changes.

[[chain-change-same-algorithm]]
==== Chain changes: same algorithm, different tasks.

The same brick repair technique is used to handle all three of the
following cases:

	adding a brick to a chain

	brick failure

	removing a brick from a chain

==== Adding a brick to a chain

When a brick B is added to a chain, that brick is treated as if it
was a member of the chain that had crashed long ago and has now been
restarted. The same repair algorithm is used to synchronize data on
brick B that is used to repair bricks that were formerly in service
but since crashed and restarted. See xref:chain-repair[] for a
description of the Hibari repair mechanism.

==== Brick failure

If a brick fails, the Admin Server must remove it from the chain by
reordering the chain. The general order of operations are:

	Set new roles for the chain’s bricks, starting from the end of the
chain and working backward.

	Broadcast the new chain membership to all Hibari clients.

If a Hibari client attempts to send an operation to a brick during
step #2 and before the new chain info from step #2 arrives, that
client may send the operation to the wrong brick. Hibari servers will
automatically forward the query to the correct brick. Due to network
latencies and asynchronous message passing, it is possible that the
query be forwarded multiple times before it arrives at the correct
brick.

Specific details of how chain replication handles brick failure can be
found in van Renesse and Schneider’s paper, see xref:chains[] for
citation details.

===== Failure of a head brick

If the head brick fails, then the first middle brick is promoted to the
head role. If there is no middle brick (i.e. the length of the chain
was two), then the tail brick is promoted to a standalone role (chain
length is one).

===== Failure of a tail brick

If the tail brick fails, then the last middle brick is promoted to the
tail role. If there is no middle brick (i.e. the length of the chain
was two), then the head brick is promoted to a standalone role (chain
length is one).

[[failure-middle-brick]]
===== Failure of a middle brick

The failure of a middle brick requires the most complex recovery
procedure.

	Assume that the chain is three bricks: A -> B -> C.

	** If the chain is longer (more bricks upstream of A and/or more

	bricks downstream of C), the procedure remains the same.

	Brick C is configured to have its upstream brick be A.

	Brick A is configured to have its downstream brick be C.

	The head of the chain (brick A or the head brick upstream of A)
requests a log flush of all unacknowledged writes downstream. This
step is required to re-send updates that were processed by A but
have not been received by C because of middle brick B‘s
failure.

	Brick A waits until it receives a write acknowledgment from the
tail of the chain. Once received, all bricks in the chain have
synchronously written all items to their write-ahead logs in the
correct order.

==== Removing a brick from a chain

Removing a brick B permanently from a chain is a simple operation.
Brick B is
handled the same way that any other brick failure is handled: the
chain is simply reconfigured to exclude B. See
xref:chain-reordering-middle-brick-fails[] for an example.

IMPORTANT: When a brick B is removed from a chain, all data from
brick B will be deleted when the operation is successful. At this
time, the API does not have an option to allow B‘s data to be
preserved.

// JWN: Wah ... a typo could be very dangerous. Delayed deletion of
// the data and/or some other protective mechanism could be helpful.

[[chain-migration]]
=== Chain Migration: Rebalancing Data Across Chains

There are several cases where it is desirable to rebalance data across
chains and bricks in a Hibari cluster:

	Chains are added or removed from the cluster

	Brick hardware is changed, e.g. adding extra disk or RAM capacity

	A change in a table’s consistent hashing algorithm configuration
forces data (by definition) to another chain.

The same technique is used in all of these cases: chain migration.
This mirrors the same design philosophy that’s used for handling chain
changes (see xref:chain-change-same-algorithm[]): use the same
algorithm to handle multiple use cases.

==== Example: Migrating from three chains to four

[[chain-migration-3to4]]
.Chain migration from 3 chains to 4 chains
svgimage::images/chain-migration-3to4[align=”center”, scaledwidth=”80%”]

In the example above, both the 3-chain and 4-chain configurations used
equal weighting factors. When all chains use the same weighting
factor (e.g. 100), then the consistent hashing map in the ``before’’
and ``after’’ cases look something like the figure below.

[[migration-3to4]]
.Migration from three chains to four chains
svgimage::images/migration-3to4[align=”center”, scaledwidth=”70%”]

It doesn’t matter that chain #4’s total area within the unit interval
is divided into three regions. What matters is that chain #4’s total
area is equal to the regions of the other three chains.

==== Example: Migrating from three chains to four with unequal weighting

The diagram xref:migration-3to4[] demonstrates how a migration would
work when all chains have an equal weighting factor, e.g. 100. If
instead, the new chain had a weighting factor of only 50, then the
distribution of keys to each chain would look like this:

.Migration from three chains to four with unequal chain weighting factors
[options=”header”]
|=========
| Chain Name | Total % of keys before/after migration | Total unit interval size before/after migration
| Chain 1 | 33.3% -> 28.6% | 100/300 -> 100/350
| Chain 2 | 33.3% -> 28.6% | 100/300 -> 100/350
| Chain 3 | 33.3% -> 28.6% | 100/300 -> 100/350
| Chain 4 | 0% -> 14.3% (4.8% in each of 3 regions) | 0/300 -> 50/350 (spread across 3 regions)
| Total | 100% -> 100% | 300/300 -> 350/350
|=========

For the original three chains, the total amount of unit interval
devoted to those chains is (100+100+100)/350 = 300/350. The 4th
chain, because its weighting is only 50, would be assigned 50/350 of
the unit interval. Then, an equal amount of unit interval is taken
from the original chains and reassigned to chain #4, so (50/350)/3 of
the unit interval must be taken from each original chain.

==== Hotspot migration

With the lowest level API, it is possible to assign “hot” keys to
specific chains, to try to balance a handful of keys that are very
frequently accessed from a large number of keys that are very
infrequently accessed. The table below gives an example that builds
upon xref:migration-3to4[]. We assume that our “hot” key is mapped
onto the unit interval at position 0.5.

.Consistent hashing lookup table with three chains of equal weight and a fourth chain with an extremely small weight
[options=”header”]
|=========
| Unit interval start | Unit interval end | Chain name
| 0.000000 | 0.333333... | Chain 1
| 0.333333... | 0.5 | Chain 2
| 0.5 | 0.500000000000001 | Chain 4
| 0.500000000000001 | 0.666666... | Chain 2
| 0.666666... | 1.0 | Chain 3
|=========

The table above looks almost exactly like the “Before Migration” half
of xref:migration-3to4[]. However, there’s a very tiny “hole” that is
punched in chain #2’s space that maps key hashes in the range of 0.5
to 0.500000000000001 to chain #4.

[[adding-removing-client-nodes]]
=== Adding/Removing Client Nodes

It is not strictly necessary to formally configure a list of all
Hibari client nodes that may use a Hibari cluster. However,
practically speaking, it is useful to do so.

To bootstrap itself to be able to use Hibari servers, a Hibari client
must be able to:

	Communicate with other Erlang nodes in the cluster.

	Receive “global hash” information from the cluster’s Admin
Server.

To solve both problems, the Admin Server maintains a list of Hibari
client nodes. (Hibari server nodes do not need this mechanism.) For
each client node, a monitor process on the Admin Server polls the node
to see if the gdss or gdss_client application is running. If the
client node is running, then problem #1 (connecting to other nodes in
the cluster) is automatically solved by using net_adm:ping/1.
Problem #2 is solved by the client monitor calling
brick_admin:spam_gh_to_all_nodes/0.

The Admin Server’s client monitor runs approximately once per second,
so there may be a delay of up to a couple of seconds before a
newly-started Hibari client node is connected to the rest of the
cluster and has all of the table info required to start work.

When a client node goes down, an OTP alarm is raised until the client
is up and running again.

Two methods can be used to view and change the client node monitor
list:

	Use the Admin Server’s HTTP service: follow the “Add/Delete a client
node monitor” hyperlink at the bottom of the top-level page.

	Use the Erlang CLI to use these functions:

** brick_admin:add_client_monitor/1
** brick_admin:delete_client_monitor/1
** brick_admin:get_client_monitor_list/0

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

The Partition Detector Application

For multi-node Hibari deployments, Hibari includes a network
monitoring feature that watches for partitions within the cluster, and
attempts to minimize the database consequences of such partitions.
This Erlang/OTP application is called the Partition Detector.

You can configure the network monitoring feature in the central.conf
file. See xref:central-conf-parameters[] for details.

IMPORTANT: Use of this feature is mandatory for a multi-node Hibari
deployment to prevent data corruption in the event of a network
partition. If you don’t care about data loss, then as an ancient
Roman might say, ``Caveat emptor.’’
Or in English, ``Let the buyer beware.’‘

For the network monitoring feature to work properly, you must first
set up two separate networks, Network A and Network B, that connect to
each of your Hibari physical bricks. The networks must be set up as
follows:

	Network A and Network B must be physically separate networks, with

different IP and broadcast addresses. See the diagram below for a two
node cluster.
* Network A must be the network used for all Hibari data communications.
* Network A should have as few physical failure points as
possible. For example, a single switch or load balancer is preferable
to two switches cabled together.
* The separate Network B will be used to compare node heartbeat patterns.

IMPORTANT: For the network partition monitor to work properly, your
network partition monitor configuration settings must match as closely
as possible. Each Hibari physical brick must have unique IP addresses
on its two network interfaces (as required by all IP networks), but
all configurations must use the same IP subnets for the ‘A’ and ‘B’
networks, and all configurations must use the same network ‘A’
tiebreaker.

[[a-and-b-network-diagram]]
.Network ‘A’ and network ‘B’ diagram
svgimage::images/a-and-b-diagram[align=”center”, scaledwidth=”80%”]

=== Partition Detector Heartbeats

Through the partition monitoring application, Hibari nodes send
heartbeat messages to one another at the configurable
heartbeat_beacon_interval, and each node keeps track of heartbeat
history from each of the other nodes in the cluster. The heartbeats
are transmitted through both Network A and Network B. If node
gdss1@machine1 detects that the incoming heartbeats from
gdss1@machine2 are absent both on Network A and on Network B, then
gdss1@machine2 might have a problem. If the incoming heartbeats from
gdss1@machine2 fail on Network A but not on Network B, a partition on
Network A might be the cause. If heartbeats fail on Network B but not
Network A, then Network B might have a partition problem, but this is
less serious because Hibari data communication does not take place on
Network B.

Configurable timers on each Hibari node determine the interval at
which the absence of incoming heartbeats from another node is
considered a problem. If on node gdss1@machine1 no heartbeat has been
received from gdss1@machine2 for the duration of the configurable
heartbeat_warning_interval, then a warning message is
written to the application log of node gdss1@machine1. This warning
message can be triggered by missing heartbeats either on Network A or
on Network B; the warning message will indicate which node has not
been heard from, and over which network.

=== Partition Detector’s Tiebreaker

If on node gdss1@machine1 no heartbeat has been received from
gdss1@machine2 via Network A for the duration of the configurable
heartbeat_failure_interval, and if during that period heartbeats
from gdss1@machine2 continue to be received via Network B, then a
network partition is presumed to have occurred in Network A. In this
scenario, node gdss1@machine1 will attempt to ping the configurable
network_a_tiebreaker address. If gdss1@machine1 successfully pings
the tiebreaker address, then gdss1@machine1 considers itself to be
on the “correct” side of the Network A partition, and it continues
running. If by contrast gdss1@machine1 cannot successfully ping the
tiebreaker address, then gdss1@machine1 considers itself to be on
the “wrong” side of the Network A partition and shuts itself
down. Meanwhile, comparable calculations and decisions are being made
by node gdss1@machine2.

In a scenario where the network monitoring application determines that
a partition has occurred on Network B – that is, heartbeats are received
through Network A but not through Network B – then warnings are written
to the Hibari nodes’ application logs but no node is shut down.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Backup and Disaster Recovery

=== Backup and Recovery Software

At the time of writing, Hibari’s largest cluster deployment is:

	Well over 50 physical bricks

	Well over 4TB of disk space per physical brick

	Single data center, operated by a telecom carrier and integrated
with third-party monitoring and control software

If a backup were made of all data in the cluster, the biggest question
is, “Where would you store the backup?” Given the cluster’s purpose
(real-time email/messaging services), the quality of the data center’s
physical and software infrastructures, the length of the Hibari chains
used for physical data redundancy, the business factors influencing
the choice not to deploy a “hot backup” data center, and other
factors, Cloudian has not developed the backup and recovery software for
Hibari. Cloudian’s smaller Hibari deployments also resemble the largest
deployment.

However, we expect that backup and recovery software will be high
priorities for open source Hibari users. Together with the open
source users and developers, we expect this software to be developed
relatively quickly.

=== Disaster Recovery via Remote Data Centers

==== Single Hibari cluster spanning two data centers

It is certainly possible to deploy a single Hibari cluster across two
(or more) data centers. At the moment, however, there is only one way
of doing it: each chain of data replication must have a brick located
in each data center.

As a consequence of brick placement, it is mandatory that Hibari
clients pay the full round-trip latency penalty for each update. See
xref:diagram-write-path-3[] for a diagram; the “head” and “tail”
bricks would be in separate data centers, using WAN network
connectivity between them.

For some applications, strong consistency is a higher priority than
low latency (both for writes and possibly for reads, if the client is
not co-located in the same data center as the chain’s tail brick). In
those cases, such cross-data-center brick placement can make sense.

However, Hibari’s Admin Server cannot handle all failure scenarios,
especially when WAN connectivity is broken between data centers; more
programming work is required for the Admin Server to automate the
handling of all processes. Furthermore, Hibari’s basic design cannot
tolerate network partitions well, see xref:cap-theorem-and-hibari[]
and xref:admin-server-and-network-partition[]. If the Admin Server
were capable of handling WAN network partitions, it’s almost certain
that all Hibari nodes in one of the partitioned data centers would be
inactive.

==== Multiple Hibari clusters, one per data center

Conceptually, it’s possible to run multiple Hibari clusters, one per
data center. However, Hibari does not have the software required for
WAN-scale replication.

In theory, such software isn’t too difficult to develop. The tail
brick of each chain can maintain a log of recent updates to the
chain. Those updates can be transmitted asynchronously across a WAN
to another Hibari cluster in a remote data center. Such a scheme is
depicted in the figure below.

[[async-replication-try1]]
.A future scenario of asynchronous, cross-data-center Hibari replication
svgimage::images/async-replication-try1[align=”center”, scaledwidth=”80%”]

This kind of replication makes the most sense if “Data Center #1”
were in an active role and Data Center #2” were in a hot-standby
role. In that case, there would never be a “Data Center #2 Client”,
so there would be no problem of strong consistency violations by
clients accessing both Hibari clusters simultaneously. The only
consistency problem would be one of durability: the replay of async
update logs every N seconds would mean that up to N seconds of
updates within “Data Center #1” could be lost.

However, if clients access both Hibari clusters simultaneously, then
Hibari’s strong consistency guarantee would be violated. Some
applications can tolerate weakened consistency. Other applications,
however, cannot. For the those apps that must have strong
consistency, Hibari will require additional design and code.

TIP: A keen-eyed reader will notice that xref:async-replication-try1[]
is not fully symmetric. If clients in “Data Center #2” make updates
to the chain, then the same async update log maintenance and replay to
“Data Center #1” would also be necessary.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hibari Application Logging

NOTE: This chapter is outdated and will be rewritten by Hibari v0.6
release. Hibari now uses link:https://github.com/basho/lager#readme[Basho Lager]
for logging and the default location of the log files is:
<HIBARI_HOME>/logs/

The Hibari application log records application-related alerts,
warnings, and informational messages, as well as trace messages for
debugging. By default the application log is written to this file:

<HIBARI_HOME>/var/log/gdss-app.log

=== Format of the Hibari Application Log

Each log entry in the Hibari application log is composed of these
fields in this order, with vertical bar delimitation:

<PID>|<<ERLANGPID>>|<DATETIME>|<MODULE>|<LEVEL>|<MESSAGECODE>|<MESSAGE>

This Hibari application log entry format is not configurable. Each of
these application log entry fields is described in the table that
follows. The ``Position’’ column indicates the position of the field
within a log entry.

[options=”header”,cols=”^,^m,<”]
|=========
| Position | Field | Description
| 1 | <PID> | System-assigned process identifier (PID) of the process that generated the log message.
| 2 | <ERLANGPID> | Erlang process identifier.
| 3 | <DATETIME> | Timestamp in format %Y%m%d%H%M%S, where %Y = four digit year; %m = two digit month; %d = two digit date; %H = two digit hour; %M = two digit minute; and %S = two digit seconds. For example, 20081103230123.
| 4 | <MODULE> | The internal component with which the message is associated. This field is set to a minimum length of 13 characters. If the module name is shorter than 13 characters, spaces will be appended to the module name so that the field reaches the 13 character minimum.
| 5 | <LEVEL> | The severity level of the message. The level will be one of the following: ALERT, a condition requiring immediate correction; WARNG, a warning message, indicating a potential problem; INFO, an informational message indicating normal activity, and requiring no action; DEBUG, a highly granular, process-descriptive message potentially of use when debugging the application.
| 6 | <MESSAGECODE> | Integer code assigned to all messages of severity level INFO or higher. NOTE: This code is not yet defined in the Hibari open source release.
| 7 | <MESSAGE> | The message itself, describing the event that has occurred.
|=========

=== Application Log Example

Items written to the Hibari application log come from multiple sources:

	The Hibari OTP application

	Other OTP applications bundled with Hibari

	Other OTP applications within the Erlang runtime system,
e.g. kernel and sasl.

The <MESSAGE> field is free-form text. Application code can freely
add newline characters and various white-space padding wherever it
wishes. However, the file format dictates that a newline character
(ASCII 10) appear only at the end of the entire app log message.

The Hibari error logger must therefore reformat the text of the
<MESSAGE> field to remove newlines and to remove whitespace
padding. The result is not nearly as readable as the formatting
presented to the Erlang shell. For example, within the shell, a
message can look like this:

	=PROGRESS REPORT==== 12-Apr-2010::17:49:22 ===

	
	supervisor: {local,sasl_safe_sup}

	
	started: [{pid,<0.43.0>},

	{name,alarm_handler},
{mfa,{alarm_handler,start_link,[]}},
{restart_type,permanent},
{shutdown,2000},
{child_type,worker}]

Within the Hibari application log, however, the same message is
reformatted as line #2 below. The reformatted version is much more
difficult for a human to read than the version above, but the purpose
of the app log file is to be machine-parsable, not human-parsable.

8955|<0.54.0>|20100412174922|gmt_app |INFO|2190301|start: normal []
8955|<0.55.0>|20100412174922|SASL |INFO|2199999|progress: [{supervisor,{local,gmt_sup}},{started,[{pid,<0.56.0>},{name,gmt_config_svr},{mfa,{gmt_config_svr,start_link,[”../priv/central.conf”]}},{restart_type,permanent},{shutdown,2000},{child_type,worker}]}]
8955|<0.55.0>|20100412174922|SASL |INFO|2199999|progress: [{supervisor,{local,gmt_sup}},{started,[{pid,<0.57.0>},{name,gmt_tlog_svr},{mfa,{gmt_tlog_svr,start_link,[]}},{restart_type,permanent},{shutdown,2000},{child_type,worker}]}]
8955|<0.36.0>|20100412174922|SASL |INFO|2199999|progress: [{supervisor,{local,kernel_safe_sup}},{started,[{pid,<0.59.0>},{name,timer_server},{mfa,{timer,start_link,[]}},{restart_type,permanent},{shutdown,1000},{child_type,worker}]}]
[...skipping ahead...]
8955|<0.7.0>|20100412174923|SASL |INFO|2199999|progress: [{application,gdss},{started_at,gdss_dev2@bb3}]
8955|<0.98.0>|20100412174923|DEFAULT |INFO|2199999|brick_sb: Admin Server not registered yet, retrying
8955|<0.65.0>|20100412174923|SASL |INFO|2199999|progress: [{supervisor,{local,brick_admin_sup}},{started,[{pid,<0.98.0>},{name,brick_sb},{mfa,{brick_sb,start_link,[]}},{restart_type,permanent},{shutdown,2000},{child_type,worker}]}]
8955|<0.105.0>|20100412174924|DEFAULT |INFO|2199999|top of init: bootstrap_copy1, [{implementation_module,brick_ets},{default_data_dir,”.”}]
8955|<0.105.0>|20100412174924|DEFAULT |INFO|2199999|do_init_second_half: bootstrap_copy1
8955|<0.79.0>|20100412174924|SASL |INFO|2199999|progress: [{supervisor,{local,brick_brick_sup}},{started,[{pid,<0.105.0>},{name,bootstrap_copy1},{mfa,{brick_server,start_link,[bootstrap_copy1,[{default_data_dir,”.”}]]}},{restart_type,temporary},{shutdown,2000},{child_type,worker}]}]
8955|<0.105.0>|20100412174924|DEFAULT |INFO|2199999|do_init_second_half: bootstrap_copy1 finished

== Examining Latency in Production (Internal Event Tracing)

The Hibari source code has been annotated with over 400 tracepoints,
and they give the developer and system administrator for tracing
events through Hibari’s code. Those tracepoints are designed to be
extremely lightweight and can be enabled in production environment
without sacrificing performance.

Trace data can be collected via DTrace/SystemTap or Erlang’s tracing
mechanism. For more details, please refer
link:http://hibari.github.com/hibari-doc/hibari-contributor-guide.en.html#_hibari_internal_tracepoints[“Hibari internal tracepoints”]
section of Hibari Contributor’s Guide.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hardware and Software Considerations

As noted in xref:hibari-origins[], at the time of writing, Hibari has
been deployed exclusively in data centers run by telecom carriers.
All carriers have very specific requirements for integrating with its
existing deployment, network monitoring, alarm management, and other
infrastructures. As a result, many of those features have been
omitted to date from Hibari. With Hibari’s release into an “open
source environment”, we expect that these gaps will be closed.

Hibari’s carrier-centric heritage has also influenced the types of
hardware, networking gear, operating system, support software, and
internal Hibari configuration that have been used successfully to
date. Some of these practices will change as Hibari evolves from its
original use patterns. Until then, this section discusses some of the
things that a systems/network administrator must consider when
deploying a Hibari cluster.

Similarly, application developers must be very familiar with these
same issues. An unaware developer can create an application that uses
too many resources on under-specified hardware, causing problems for
developers, support staff, and application users alike. We wish
Hibari to grow and flourish in its non-relational DB niche.

[[brick-hardware]]
=== Notes on Brick Hardware

==== Lots of RAM is better

Each Hibari logical brick stores all information about its keys in
RAM. Both the logical brick’s private write-ahead log and the common
write-ahead log are not “disk-based data structures” in the typical
sense, such as on-disk hash tables or B-trees. Therefore, Hibari
bricks require a lot of RAM to function.

For more details, see:

	xref:overview-high-performance[]

	xref:per-table-config-perf-options[] ... if a table stores its value
blobs in RAM, it will consume more RAM than if those value blobs are
stored on disk.

	xref:hibari-data-model[]

	xref:brick-init[]

==== Lots of disk I/O capacity is better

By default, Hibari will write and flush each update to disk before
sending a reply downstream or back to the client. Hibari will perform
better on systems that have higher disk I/O capacity.

	Non-volatile/battery-backed cache on the disk controller(s) is
helpful, when combined with a write-back cache policy. The more
cache, the better. If the read/write ratio of the cache can be
changed, a default policy of 10/90 or 0/100 (i.e. skewed to writes)
is typically more helpful than a default 50/50 split.

	On-disk (volatile) cache on individual disks is not helpful.

	Faster spinning disks are more helpful than slower spinning disks.

	If using RAID, a large stripe width of e.g. 512KBytes or 1024KBytes
is usually more helpful than the (usually) smaller default stripe
width on most controllers.

	If using RAID, a hardware RAID implementation may be very slightly
helpful.

	RAID redundancy (e.g. RAID 1, 10, 5, 6) is not required by Hibari,
but it can help reduce the odds of failure of an individual physical
brick. If physical bricks do not use data redundant RAID
(e.g. RAID 0, concatenation), it’s a good idea to consider using
longer replication chains to compensate.

For more details, see:

	xref:the-physical-brick[]

	xref:per-table-config-perf-options[]

	xref:hibari-data-model[]

[[high-io-rate-devices]]
==== High I/O rate devices (e.g. SSD) may be used

Hibari has some support for high I/O rate devices such as solid state
disks, flash memory disks, flash memory storage cards, et al. There
is nothing in Hibari’s implementation that would preclude using
high-speed disk devices as the only storage for Hibari write-ahead
logs.

Hibari has a feature that can segregate high write I/O with fsync(2)
operations onto a separate high-speed device, and use cheaper &
lower-speed Winchester disk devices for bulk storage. This feature
has not yet been well-tested and optimized.

For more details, see:

	xref:write-ahead-logs[]

	xref:two-wal-types[]

==== Lots of disk storage capacity may be a secondary concern

More disks of smaller capacity are almost always more helpful than a
few disks of larger capacity. RAID 0 (no data redundancy) or RAID 10
(“mirror” data redundancy) is useful for combining the I/O capacity of
multiple disks into a single logical volume. Other RAID levels, such
as 5 or 6, can be used, though at the expense of higher write I/O
overhead.

For more details, see:

	xref:write-ahead-logs[]

[[considerations-cpu]]
==== Lots of CPU capacity is a secondary concern

Hibari storage bricks do not, as a general rule, require large amounts
of CPU capacity. The largest single source of CPU consumption is in
MD5 checksum calculation. If the data objects most commonly written &
read by your application are small, then multi-socket, multi-core CPUs
are not required.

Each Hibari logical brick is implemented within the Erlang virtual
machine as a single gen_server process. Therefore, each logical
brick can (generally speaking) only fully utilize one CPU core. If
your Hibari cluster appears to have CPU-utilization imbalance, then
the recommended strategy is to change the chain placement policy of
the chains. For example, there are two methods for arranging a chain
of length three across three physical bricks:

[[1-chain-striped-across-3-bricks]]
The first example shows one chain striped across three physical
bricks. If the read/write ratio for the chain is extremely high
(i.e. most operations are reads), then most of the CPU activity (and
perhaps disk I/O, if blobs are stored on disk) will be directed to the
“Chain 1 tail” brick and cause a CPU utilization imbalance.

	.One chain striped across three physical bricks

	
Physical Brick X | Physical Brick Y | Physical Brick Z |

Chain 1 head -> Chain 1 middle -> Chain 1 tail

[[3-chains-striped-across-3-bricks]]
The second example shows the same three physical bricks but with three
chains striped across them. In this example, each physical brick is
responsible for three different roles: head, middle, and tail.
Regardless of the read/write operation ratio, all bricks will utilize
roughly the same amount of CPU.

	.Three chains striped across three physical bricks

	
Physical Brick T | Physical Brick U | Physical Brick V |

Chain 1 head -> Chain 1 middle -> Chain 1 tail ||
Chain 2 tail || Chain 2 head -> Chain 2 middle ->
Chain 3 middle -> Chain 3 tail || Chain 3 head ->

In multi-CPU and multi-core systems, a side-effect of using more
chains (and therefore more bricks) is that the Erlang virtual machine
can schedule more logical brick computation across a larger number of
cores and CPUs.

=== Notes on Networking

Hibari works quite well using commodity “Gigabit Ethernet” interfaces.
Lower latency (and higher cost) networking gear, such as Infiniband,
is not required.

For production use, it is _strongly recommended_ that all Hibari
servers be configured with two physical network interfaces, cabling,
switches, etc. For more details, see:

	xref:partition-detector[]

==== Client protocol load balancing

The native Erlang client, via the gdss or gdss_client OTP
applications, do not require any load balancing. The Erlang client
already is a participant in the consistent hashing algorithm (see
xref:consistent-hashing-example[]). The Admin Server distributes
updates to a table’s consistent hash map each time cluster membership
or chain/brick status changes.

All other client access protocols are “dumb”, by comparison. Take for
example the Amazon S3 protocol service. There is no easy way for a
Hibari cluster to convey to a generic HTTP client how to calculate
which brick to send a query to. The HTTP redirect mechanism could be
used for this purpose, but other protocols don’t have an equivalent
feature. Also, the latency overhead of sending a redirect is far
higher than Hibari’s solution to this problem.

Hibari’s solution is simple: the Hibari server-side “dumb” protocol
handler uses the same native Erlang client that any other Hibari
client app written in Erlang users. That client is capable of making
direct routing decisions. Therefore, the “dumb” protocol handler
within a Hibari node acts as a translating proxy: it uses the “dumb”
client access protocol on one side and uses the native Erlang client
API on the other.

.Hibari “dumb” protocol proxy
svgimage::images/dumb-protocol-proxy[align=”center”, scaledwidth=”80%”]

The deployed “state of the art” for such dumb protocols is to use a
TCP load balancer (aka a “layer 4” load balancer) to spread dumb
client workload across multiple Hibari dumb protocol servers.

=== Notes on Operating System

Hibari servers operate on top of the Erlang virtual machine. In
principle, any operating system that is supported by the Erlang
virtual machine can support Hibari.

==== Supported Operating Systems

In practice, Hibari is supported on the following operating systems:

	Linux x86_64
** Red Hat Enterprise Linux 5.x and 6.x (RHEL 5.3 is used in

production and QA environments within Cloudian, Inc.)

** CentOS 5.x and 6.x
** Ubuntu 12.04 LTS or newer

	Linux ARMv7 (32 bit)
** Ubuntu 12.04 LTS or newer
** Hibari runs on Calxeda EnergyCore based super high-density,

scale-out cluster

	Unix Solaris variants
** Joyent SmartOS (64 bit)

	Mac OS X

	FreeBSD (though not currently in a jail environment, due to some TCP
services getting EPROTONOSUPPORT errors)

The versions recently tested for Hibari by the community:

	CentOS 6.3 (x86_64)

	Ubuntu 12.04 LTS (ARMv7)

	Joyent SmartOS 20130221 (64 bit)

To take advantage of RAM larger than 4GB, we recommend that you use
a 64-bit version of your OS’s kernel, 64-bit versions of the user
runtime, and a 64-bit version of the Erlang/OTP runtime.

[[os-readahead-configuration]]
==== OS Readahead Configuration

Some operating systems have support for OS-based “readahead”:
pre-fetching blocks of a file with the expectation that those blocks
will soon be requested by the application. Properly configured,
readahead can substantially raise throughput and reduce latency on
many read-heavy I/O workloads.

The read I/O workloads for Hibari fall into two major categories:

	Extremely predictable sequential read-only I/O during brick
initialization (see xref:brick-init[]).

	Extremely unpredictable random read I/O for fetching value blobs
from disk.

The first I/O pattern can usually benefit a great deal from an aggressive
readahead policy. However, an aggressive readahead policy can have
the opposite effect on the second I/O pattern. Readahead policies
under Linux, for example, are defined on a per-block device basis and
does not change in response to application runtime behavior.

If your OS supports readahead policy configuration, we recommend using
a small read and then measuring its effect with a real or simulated
workload with the real Hibari server.

[[disk-scheduler-configuration]]
==== Disk Scheduler Configuration

We recommend that you experiment with disk scheduler configuration on
relevant OSes such as Linux. The “deadline” scheduler is likely to
provide better performance characteristics.

=== Notes on Supporting Software

A typical “server” type installation of a Linux or FreeBSD OS is
sufficient for Hibari. The following is an incomplete list of other
software packages that are necessary for Hibari’s installation and/or
runtime.

	NTP

	Erlang/OTP version R13B04

	Either “lynx” or “elinks”, a text-based Web browser

// JWN: This seems like a good place to mention patches that are
// needed beyond R13B04 ... busy dist port?

[[ntp-config-strongly-recommended]]
==== NTP configuration of all Hibari server and client nodes

It is strongly recommended that all Hibari server and client nodes
have the NTP daemon (Network Time Protocol) installed, properly
configured, and running.

	The brick_simple client API uses the OS clock for automatic
generation of timestamps for each key update. The application
problems caused by badly out-of-sync OS clocks can be easily avoided
by NTP.

	If a client’s clock is skewed by more than the
brick_do_op_too_old_timeout configuration attribute in
central.conf (units = milliseconds), then the brick will silently
discard the client’s operation. The only symptoms of this are:

	** Client-side timeouts when using the brick_simple, brick_server,

	or brick_squorum APIs.

** Increasing n_too_old statistic counter on the brick.

=== Notes on Hibari Configuration

There are several reasons why disk I/O rates can temporarily increase
within a Hibari physical brick:

	Logical brick checkpoints for increased write I/O ops, see
xref:checkpoints[]

	The common log “scavenger” for increased read and write I/O ops,
see xref:scavenger[]

	Chain replication repair, see xref:chain-repair[]

	** As the upstream/”repairer” brick, the extra read I/O ops,

	if the brick stores value blobs on disk

** As the downstream/”repairee” brick, extra write I/O ops

The Hibari central.conf file contains parameters that can limit the
amount of disk bandwidth used by most of these operations.

See also:

	xref:considerations-cpu[]

	xref:central-conf-parameters[]

=== Notes on Monitoring a Hibari Cluster

The Admin Server’s status page contains current status information
regarding all tables, chains, and bricks in the cluster. By default,
this service listens to TCP port 23080 and is reachable via HTTP at
http://any-hibari-node-name:23080/. HTTP redirect will steer your
browser to the Admin Server node.

	Hypertext links for each table, chain, and brick can show more
detailed info on each entity.

	The “Dump History” link at the bottom of the Admin Server’s HTTP
status page can show operations history across multiple bricks,
chains, and/or tables by using the regular expression feature.

	Each logical brick maintains counters of each type of Hibari client
op primitive. At present, these stats are only exposed via the HTTP
status server or by the native Erlang interface, but it’s possible
to expose these stats via SNMP and other protocols in a
straightforward manner.

	** Stats include: number of add, replace, set, get,

	get_many, delete, and micro-transactions.

==== Hibari Admin Server HTTP status

For example screen shots of the Admin Server status pages (a work in
progress), see link:./misc-screenshots/admin-server-status/index.html[].

See also:

	xref:chain-lifecycle-fsm[]

	xref:brick-lifecycle-fsm[]

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Administering Hibari Through the API

	Add a new table

	Delete a table

	Change to a single chain:

** Add one or more bricks (increase replication factor)
** Remove one or more bricks (decrease replication factor)
* Change to a single table.
** Add a new chain
** Remove a chain
** Change the chain weighting factor
** Change consistent hashing parameters

[[add-a-new-table]]
=== Add a New Table: brick_admin:add_table()

[[why-use-hash-prefixes]]
==== Why use hash prefixes?

Hash prefixes allow Hibari servers to guarantee the application
developer that certain keys will always be stored on the same chain
and therefore always on the same set of bricks. With this guarantee,
an application aware of hash prefixes can use micro-transactions
successfully.

For example, assume the application requires a collection of
persistent stacks that are stored in Hibari.

	Each stack is identified by a string/binary. (The two types are
identical for the sake of discussion.)

	Each item stored on the stack is a string.

	Support stack options push & pop.

	Support quick stack stats, e.g. # of elements on the stack and # of
bytes stored on the stack.

	Stacks may contain hundreds of thousands of items.

	The total size of a stack will not exceed the total storage capacity
of any single brick in the cluster.

IMPORTANT: Understanding the last assumption is vital. Because all
keys with the same hash prefix H will be managed by the same chain
C, then all bricks in C must have enough capacity to store all H
prefix keys.

The application developer then makes the following decisions:

	The application will use a table devoted to storing stacks, called
‘stack’.

	We know that the application requires strong durability (which is
the Hibari default) and that the sum total of all stack items will
exceed a single brick’s RAM capacity. Therefore, the ‘stack’
table must store its value blobs on disk. Read access to the table
will be slower than if value blobs were stored in RAM, but the
limited RAM capacity of bricks does not give us a choice.

	We have two machines, boxA and boxB, available for hosting the
table’s logical bricks.
We want to be able to survive at least one physical brick failure,
therefore all chains have a minimum length of 2.

	** We will use two chains, so that each physical machine (when up and

	running smoothly) will have 2 logical bricks for the table, one in
the chain head role and one in the chain tail role.

	** The naming scheme used for each chain name and brick name can be

	arbitrary, as long as all names are unique. However, for
ease-of-management purposes, the use of a systematic naming scheme
is strongly encouraged. The scheme used here numbers each chain
(starting at 1) and numbers each brick (also starting at 1) with
both the chain and brick number.

4. We use the following key naming convention:
** A stack’s metadata (item count, byte count) uses <<”/StackName/md”>>.
** A item uses <<”/StackName/N”>> where N is the item number.
5. We create the table using the following:
+
————————
Opts = [{hash_init, fun brick_admin:chash_init/3}, {prefix_method, var_prefix},

{num_separators, 2}, {prefix_separator, $/},
{new_chainweights, [{stack_ch1, 100}, {stack_ch2, 100}]},
{bigdata_dir, ”.”}, {do_logging, true}, {do_sync, true}].

	ChainList = [{stack_ch1, [{stack_ch1_b1, hibari1@boxA},

	
{stack_ch1_b2, hibari1@boxB}]},

	{stack_ch1, [{stack_ch2_b1, hibari1@boxB},

	{stack_ch2_b2, hibari1@boxA}]}].

brick_admin:add_table(stack, ChainList, Opts).

See xref:examples-using-the-stack[] for sample usage code.

[[types-of-brick-admin-add-table]]
==== Types for brick_admin:add_table()

	add_table(Name, ChainList, BrickOptions)

	when is_atom(Name), is_list(ChainList)
equivalent to add_table(brick_admin, Name, ChainList, BrickOptions)

	add_table(ServerRef, Name, BrickOptions)

	when is_atom(Name), is_list(BrickOptions)
equivalent to add_table(ServerRef, Name, ChainList, [])

	add_table(ServerRef::gen_server_serverref(), Name::table(),

	ChainList::chain_list(), BrickOptions::brick_options())

	-> ok |

	{error, term()} |
{error, term(), term()}

gen_server_serverref() = “ServerRef” type from STDLIB gen_server, gen_fsm, etc.
proplists_property() = “Property” type from STDLIB proplists

bigdata_option() = {‘bigdata_dir’, string()}
brick() = {logical_brick(), node()}
brick_option() = chash_prop() |

custom_prop() |
fixed_prefix_prop() |
{‘hash_init’, fun/3} |
var_prefix_prop()

brick_options() = [brick_option]
chain_list() = {chain_name(), [brick()]}
chain_name() = atom()
chash_prop() = {‘new_chainweights’, chain_weights()} |

{‘num_separators’, integer()} |
{‘old_float_map’, float_map()} |
{‘prefix_is_integer_hack’, boolean()} |
{‘prefix_length’, integer()} |
{‘prefix_method’, ‘all’ | ‘var_prefix’ | ‘fixed_prefix’} |
{‘prefix_separator’, integer()}

chain_weights() = [{chain_name, integer()}]
custom_prop() = proplists_property()
fixed_prefix_prop() = {‘prefix_is_integer_hack’, boolean()} |

{‘prefix_length’, integer()}

logging_option() = {‘do_logging’, boolean()}
logical_brick() = atom()
node() = atom()
sync_option() = {‘do_sync’, boolean()}
table() = atom()
var_prefix_prop() = {‘num_separators’, integer()} |

{‘prefix_separator’, integer()}

{‘bigdata_dir’, string()}::
To store value blobs on disk (i.e. “big data” is true), specify this
value with any string (the string’s actual value is not used).
+
IMPORTANT: To store value blobs in RAM, this option must be omitted.
+
{‘do_logging’, boolean()}::
Specify whether all bricks in the table will log updates to disk.
If not specified, the default is true.
+
{‘do_sync’, boolean()}::
Specify whether all bricks in the table will synchronously flush all
updates to disk before responding to the client.
If not specified, the default is true.
+
{‘hash_init’, fun/3}::
Specify the hash initialization function. Of the four hash methods
bundled with Hibari, we recommend using brick_hash:chash_init/3
only.
+
{‘new_chainweights, chain_weights()}::
(For brick_admin:chash_init/3)
Specify the chainweights for this new
table. For creating a new table, this option is not used.
However, this option is used when changing a table to
add/remove chains or to change other table-related parameters.
+
{‘num_separators’, integer()}::
(For brick_admin:chash_init/3 and brick_admin:var_prefix_init/3)
For variable prefix hashes, this option specifies how many instances
of the variable prefix separator character (see ‘prefix_separator’
below) are included in the hashing prefix.
The default is 2.
+
For example, if {‘prefix_separator’, $/}, then
+
** With {‘num_separators’, 2} and key <<”/foo/bar/baz/hello”>>,

the hashing prefix is <<”/foo/”>>.

	** With {‘num_separators’, 3} and key <<”/foo/bar/baz/hello”>>,

	the hashing prefix is <<”/foo/bar/”>>.

	

{‘old_float_map’, float_map()}::
Specify the old version of the “float map”.
For creating a new table, this option is not used.
However, this option is used when changing a table to
add/remove chains or to change other table-related parameters: it
is used to create a new mapping of {table, key} -> chain that
relocates only a minimum number of keys a new chain.
+
{‘prefix_method’, ‘all’ | ‘var_prefix’ | ‘fixed_prefix’}::
(For brick_admin:chash_init/3) Specify which prefix method will be
used for consistent hashing:
+
** ‘all’: Use the entire key
** ‘var_prefix’: Use a variable-length prefix of the key
** fixed_prefix’: Use a fixed-length prefix of the key
+
{‘prefix_is_integer_hack’, boolean()}::
(For brick_admin:fixed_prefix_init/3)
If true, the prefix should be interpreted
as an ASCII representation of a base 10 integer for use as the
hash calculation.
+
{‘prefix_length’, integer()}::
(For brick_admin:fixed_prefix_init/3)
For a fixed-prefix hashes, this option specifies the prefix length.
+
{‘prefix_separator’, integer()}::
(For brick_admin:chash_init/3 and brick_admin:var_prefix_init/3)
For variable prefix hashes, this option specifies the
single byte ASCII value of the byte
that separates the key’s prefix from the rest of the key.
The default is $/, ASCII 47.

[[examples-using-the-stack]]
==== Examples code for using the stack

.Create a new stack

Val = #stack_md{count = 0, bytes = 0}.
brick_simple:add(stack, “/new-stack/md”, term_to_binary(Val)).
————————————————

.Push an item onto a stack

{ok, OldTS, OldVal} = brick_simple:get(stack, “/new-stack/md”).
#stack_md{count = Count, bytes = Bytes} = binary_to_term(OldVal).
NewMD = #stack_md{count = Count + 1, bytes = Bytes + size(NewItem)}.
ItemKey = “/new-stack/” ++ integer_to_list(Count).
[ok, ok] = brick_simple:do(stack,

	[brick_server:make_txn(),

	
	brick_server:make_replace(“/new-stack/md”,

	term_to_binary(NewMD),
0, [{testset, OldTS}]),

brick_server:make_add(ItemKey, NewItem)]).

.Pop an item off a stack

{ok, OldTS, OldVal} = brick_simple:get(stack, “/new-stack/md”).
#stack_md{count = Count, bytes = Bytes} = binary_to_term(OldVal).
ItemKey = “/new-stack/” ++ integer_to_list(Count - 1).
{ok, _, Item} = brick_simple:get(stack, ItemKey).
NumBytes = proplists:get_value(val_len, Ps).
NewMD = #stack_md{count = Count - 1, bytes = Bytes - size(Item)}.
[ok, ok] = brick_simple:do(stack,

	[brick_server:make_txn(),

	
	brick_server:make_replace(“/new-stack/md”,

	term_to_binary(NewMD),
0, [{testset, OldTS}]),

brick_server:make_delete(ItemKey)]).

Item.

[[delete-a-table]]
=== Delete a Table

As yet, Hibari does not have a method to delete a table. The only
methods available now are:

	Delete all files and subdirectories from the bootstrap_* brick
data directories, restart the Admin Server, and recreate all tables.
(Also known as, “Start over”.)

	Make a backup copy of all bootstrap_* brick data directories
before creating a new table. If you wish to undo, then stop Hibari
on all Admin Server-eligible nodes, remove the bootstrap_* brick
data directories, restore the bootstrap_* brick data directories
from the previous backup, then start all of the Admin
Server-eligible nodes.

[[change-a-chain-add-remove-bricks]]
=== Change a Chain: Add or Remove Bricks

Adding or removing bricks from a single chain changes the replication
factor for the keys stored in that chain: more bricks increases the
replication factor, and fewer bricks decreases it.

.Data types for brick_admin:change_chain_length()

brick_admin:change_chain_length(ChainName, BrickList)

ChainName = atom()
BrickList = [brick()]

brick() = {logical_brick(), node()}
logical_brick() = atom()
node() = atom()
————————————–

See also,
xref:example-change-chain-length[brick_admin:change_chain_length() usage examples].

[[change-a-table-add-remove-chains]]
=== Change a Table: Add/Remove Chains

.Data types for brick_admin:start_migration()

	brick_admin:start_migration(TableName, LH)

	equivalent to brick_admin:start_migration(TableName, LH, [])

brick_admin:start_migration(TableName, LH, Options)
-> {ok, cookie()} |

{‘EXIT’, term()}

TableName = atom()
LH = hash_r()
Options = migration_options()

cookie() = term()
migration_option() = {‘do_not_initiate_serial_ack’, boolean()} |

{‘interval’, integer()} |
{‘max_keys_per_chain’, integer()} |
{‘max_keys_per_iter’, integer()} |
{‘propagation_delay’, integer()}

migration_options() = [migration_option()]

brick_admin:chash_init(‘via_proplist’, ChainList, Options)
-> hash_r()

ChainList = chain_list()
Options = brick_options()
————————————–

See xref:types-of-brick-admin-add-table[] for definitions of
chain_list() and brick_options() types.

The hash_r() type is an Erlang record, #hash_r as defined in the
brick_hash.hrl header file. It is normally considered an opaque
type that is created by a function such as brick_hash:chash_init/3.

NOTE: The options list passed in argument #3 to
brick_admin:chash_init/3 is the same properties list that is used
for brick_admin:add_table/3. The difference is that the options
that are related strictly to brick behavior, such as the do_logging
and do_sync properties, are ignored by chash_init/3.

Once a hash_r() term is created and brick_admin:start_migration/2
is called successfully, the data migration will start immediately.

The cookie() type is an opaque term that uniquely identifies the
data migration that was triggered for the TableName table. Another
data migration may not be triggered until the current migration has
finished successfully.

The migration_option() properties are described below:

{‘do_not_initiate_serial_ack’, boolean()}::
For internal use only, do not use.
+
{‘interval’, integer()}::
Interval (in milliseconds) to send kick_next_sweep messages.
Default = 50.
+
{‘max_keys_per_chain’, integer()}::
Maximum number of keys
to send to any particular chain. Not yet implemented.
+
{‘max_keys_per_iter’, integer()}::
Maximum number of keys to examine per sweep iteration.
Default = 500 for bricks with value blobs in RAM, 25 for bricks with
value blobs on disk.
+
{‘propagation_delay’, integer()}::
Number of milliseconds to delay for each brick’s logging operation.
Default = 0.

See also xref:changing-chains-example[].

[[change-a-table-chain-chain-weighting]]
=== Change a Table: Change Chain Weighting

The functions to change chain weighting are the same for
adding/removing chains, see xref:change-a-table-add-remove-chains[]
for additional details.

When creating a hash_r() type record, follow these two bits of
advice:

	The chain_list() term remains exactly the same as the chain list
currently used by the table. See
brick_admin:get_table_chain_list/1 for how to retrieve this list.

	The new_chainweights property in the brick_options() list
specifies a different set of chain weighting factors than is
currently used by the table. The current chain weighting list is in
the brick_options property returned by the
brick_admin:get_table_info/1 function.

See also xref:changing-chains-example[].

[[admin-server-api]]
=== Admin Server API

See EDoc documentation for brick_admin.erl API.

[[scoreboard-api]]
=== Scoreboard API

See EDoc documentation for brick_sb.erl API.

[[chain-monitor-api]]
=== Chain Monitor API

See EDoc documentation for brick_chainmon.erl API.

[[changing-chain-length]]
=== Changing Chain Length: Examples

The Admin Server’s basic definition of a chain: the chains name, and
the list of bricks. In turn, each brick is defined by a 2-tuple of
brick name and node name.

	Example chain definition, chain length=1

	{tab1_ch1, [{tab1_ch1_b1, hibari1@bb3}]}

The function brick_admin:get_table_chain_list/1 will retrieve the
active chain definition list for a table. For example, we retrieve the
chain definition list for the table tab1. The node bb3 is the
hostname of my laptop.

(hibari1@bb3)24> Tab1ChList.
[{tab1_ch1,[{tab1_ch1_b1,hibari1@bb3}]}]
———-

NOTE: The brick_admin:get_table_chain_list/1 function will retrieve
the active chain definition list for a table: only bricks that are in
ok state will be shown. If a chain has a brick that has crashed,
that brick will not appear in the list returned by this function. The
brick_admin:get_table_info() function can fetch the list of all
bricks, in service and crashed, but the API is not as convenient.

[[example-change-chain-length]]
To change the chain length, use the
brick_admin:change_chain_length/2 function. The arguments are the
chain name and brick list.

NOTE: Any bricks in the brick list that aren’t in the chain are
automatically started. Any bricks in the current chain that are not in
the new list are halted, and their persistent data will be deleted.

// JWN: The deletion is not immediate on disk - correct? Scavenger is
// needed - right?

ok

	(hibari1@bb3)30> {ok, Tab1ChList2} = brick_admin:get_table_chain_list(tab1). {ok,[{tab1_ch1,[{tab1_ch1_b1,hibari1@bb3},

	{tab1_ch1_b2,hibari1@bb3}]}]}

Now the tab1_ch1 chain has length two. We’ll shorten it back down
to length 1.

(hibari1@bb3)32> {ok, Tab1ChList3} = brick_admin:get_table_chain_list(tab1).
{ok,[{tab1_ch1,[{tab1_ch1_b2,hibari1@bb3}]}]}
—————-

NOTE: A chain’s new brick list must contain at least one brick from
the current chain’s definition. If the intersection of old brick list
and new brick list is empty, the command will fail.

[[changing-chains-example]]
=== Creating and Rebalancing Chains: Examples

The procedure for creating new chains, deleting existing chains, and
reweighing existing chains, and rehashing is done using the the
brick_admin:start_migration() function. The chain definitions are
specified in the same way as changing chain lengths, see
xref:changing-chain-length[] for details.

The data structure required by brick_admin:start_migration/2 is more
complex than the relatively-simple brick list that
brick_admin:change_chain_length/2 requires. This section will
demonstrate the creation of this structure, the ``local hash record’‘,
step-by-step.

First, we create a new chain definition list. (Refer to
xref:changing-chain-length[] if necessary.) For this example, we’ll
assume that we’ll be modifying the tab1 table and that we’ll be
adding two more chains. Each chain will be of length one. We’ll
place each chain on the same node as everything else, hibari1@bb3
(i.e. my laptop).

	(hibari1@bb3)49> NewCL = [{tab1_ch1, [{tab1_ch1_b1, hibari1@bb3}]},

	{tab1_ch2, [{tab1_ch2_b1, hibari1@bb3}]},
{tab1_ch3, [{tab1_ch3_b1, hibari1@bb3}]}].

	[{tab1_ch1,[{tab1_ch1_b1,hibari1@bb3}]},

	{tab1_ch2,[{tab1_ch2_b1,hibari1@bb3}]},
{tab1_ch3,[{tab1_ch3_b1,hibari1@bb3}]}]

NOTE: Any bricks in the brick list that aren’t in a chain are
automatically started. Any bricks in a current chains that are not in
the chain definition are halted, and their persistent data will be
deleted.

Next, we retrieve the table’s current hashing configuration. The data
is returned to us in the form of an Erlang property list. (See the
Erlang/OTP documentation for the proplists module, located in the
“Basic Applications” area under “stdlib”.) We then pick out several
properties that we’ll need later; we use lists:keyfind/3 instead of
a function in the proplists module because it will preserve the
properties in 2-tuple form, which will save us some typing effort
later.

...lots of stuff omitted...

(hibari1@bb3)53> Opts = proplists:get_value(brick_options, TabInfo).
[{hash_init,#Fun<brick_hash.chash_init.3>},

{old_float_map,[]},
{new_chainweights,[{tab1_ch1,100}]},
{hash_init,#Fun<brick_hash.chash_init.3>},
{prefix_method,var_prefix},
{prefix_separator,47},
{num_separators,3},
{bigdata_dir,”cwd”},
{do_logging,true},
{do_sync,true},
{created_date,{2010,4,17}},
{created_time,{17,21,58}}]

(hibari1@bb3)58> PrefixMethod = lists:keyfind(prefix_method, 1, Opts).
{prefix_method,var_prefix}

(hibari1@bb3)59> NumSep = lists:keyfind(num_separators, 1, Opts).
{num_separators,3}

(hibari1@bb3)60> PrefixSep = lists:keyfind(prefix_separator, 1, Opts).
{prefix_separator,47}

(hibari1@bb3)61> OldCWs = proplists:get_value(new_chainweights, Opts).
[{tab1_ch1,100}]

(hibari1@bb3)62> OldGH = proplists:get_value(ghash, TabInfo).

(hibari1@bb3)63> OldFloatMap = brick_hash:chash_extract_new_float_map(OldGH).

Next, we create a new property list.

	(hibari1@bb3)72> NewOpts = [PrefixMethod, NumSep, PrefixSep,

	{new_chainweights, NewCWs},
{old_float_map, OldFloatMap}].

	[{prefix_method,var_prefix},

	{num_separators,3},
{prefix_separator,47},
{new_chainweights,[{tab1_ch1,100},

{tab1_ch2,100},
{tab1_ch3,100}]}

{old_float_map, []}]

Next, we use the chain definition list, NewCL, and the table options
list, NewOpts, to create a ``local hash’’ record. This record will
contain all of the configuration information required to change a
table’s consistent hashing characteristics.

...lots of stuff omitted...

[[chash-migration-pre-check]]
We’re just one step away from changing the tab1 table. Before we
change the table, however, we’d like to see how the table change will
affect the data in the table. First, we add 1,000 keys to the tab1
table. Then we use the brick_simple:chash_migration_pre_check/2
function to tell us how many keys will move and to where.

ok,ok,ok,ok,ok,ok,ok,ok,ok,ok|...]

(hibari1@bb3)75> brick_simple:chash_migration_pre_check(tab1, NewLH).
[{keys_before,[{tab1_ch1,1001}]},

{keys_keep,[{tab1_ch1,348}]},
{keys_moving,[{tab1_ch2,315},{tab1_ch3,338}]},
{keys_moving_where,[{tab1_ch1,[{tab1_ch2,315},

{tab1_ch3,338}]}]},

{errors,[]}]

The output above shows us that of the 1,001 keys in the tab1 table,
348 will remain in the tab1_ch1 chain, 315 keys will move to the
tab1_ch2 chain, and 338 keys will move to the tab1_ch3 chain.
That looks like what we want, so let’s reconfigure the table and start
the data migration.

brick_admin:start_migration(tab1, NewLH).

Immediately, we’ll see a bunch of application messages sent to the
console as new activities start:

	A migration monitoring process is started.

	New brick processes are started.

	New monitoring processes are started.

	Data migrations are started and finish

	The migration monitoring process exits.

=GMT INFO REPORT==== 20-Apr-2010::00:26:41 ===
progress: [{supervisor,{local,brick_mon_sup}},

	{started,

	
	[{pid,<0.2937.0>},

	{name,chmon_tab1_ch2},
...stuff omitted...

[...lines skipped...]
=GMT INFO REPORT==== 20-Apr-2010::00:26:41 ===
Migration monitor: tab1: chains starting

[...lines skipped...]
=GMT INFO REPORT==== 20-Apr-2010::00:26:41 ===
brick_admin: handle_cast: chain tab1_ch2 in unknown state

[...lines skipped...]
=GMT INFO REPORT==== 20-Apr-2010::00:26:52 ===
Migration monitor: tab1: sweeps starting

[...lines skipped...]
=GMT INFO REPORT==== 20-Apr-2010::00:26:54 ===
Migration number 1 finished

[...lines skipped...]
=GMT INFO REPORT==== 20-Apr-2010::00:26:57 ===
Clearing final migration state for table tab1
—————

For the sake of demonstration, now let’s see what
brick_simple:chash_migration_pre_check() would say if we were to
migrate from three chains to four chains.

(hibari_dev@bb3)25> Opts3 = proplists:get_value(brick_options, TabInfo3).

(hibari_dev@bb3)26> GH3 = proplists:get_value(ghash, TabInfo3).

(hibari_dev@bb3)28> OldFloatMap = brick_hash:chash_extract_new_float_map(GH3).

	(hibari_dev@bb3)31> NewOpts4 = [PrefixMethod, NumSep, PrefixSep,

	{new_chainweights, NewCWs4}, {old_float_map, OldFloatMap}].

	(hibari_dev@bb3)35> NewCL4 = [{tab1_ch1, [{tab1_ch1_b1, hibari1@bb3}]},

	{tab1_ch2, [{tab1_ch2_b1, hibari1@bb3}]},
{tab1_ch3, [{tab1_ch3_b1, hibari1@bb3}]},
{tab1_ch4, [{tab1_ch4_b1, hibari1@bb3}]}].

(hibari_dev@bb3)36> NewLH4 = brick_hash:chash_init(via_proplist, NewCL4, NewOpts4).

(hibari_dev@bb3)37> brick_simple:chash_migration_pre_check(tab1, NewLH4).
[{keys_before,[{tab1_ch1,349},

{tab1_ch2,315},
{tab1_ch3,337}]},

{keys_keep,[{tab1_ch1,250},{tab1_ch2,232},{tab1_ch3,232}]},
{keys_moving,[{tab1_ch4,287}]},
{keys_moving_where,[{tab1_ch1,[{tab1_ch4,99}]},

{tab1_ch2,[{tab1_ch4,83}]},
{tab1_ch3,[{tab1_ch4,105}]}]},

{errors,[]}]

The output tells us that chain tab1_ch1 will lose 99 keys,
tab1_ch2 will lose 83 keys, and tab1_ch3 will lose 105 keys. The
final key distribution across the four chains would be 250, 232, 232,
and 287 keys, respectively.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Introduction

Caution

This document is under re-construction – beware!

The Problem

There exists a dichotomy in modern storage products. Commodity storage
is inexpensive, but unreliable. Enterprise storage is expensive, but
reliable. Large capacities are present in both enterprise and
commodity class. The problem, then, becomes how to leverage
inexpensive commodity hardware to achieve high capacity enterprise
class reliability at a fraction of the cost.

This problem space has been researched extensively, especially in the
last few years: in academia, the commercial sector, and by open source
community. Hibari uses techniques and algorithms from this research
to create a solution which is reliable, cost effective, and scalable.

Key-Value Store

Hibari is key-value store. If a key-value store were represented as
an SQL table, it would be defined as:

[[sql-definition-key-value]]

SQL-like definition of a generic key value store

CREATE TABLE foo (
 BLOB key;
 BLOB value;
) PRIMARY KEY key;

In truth, each key stored in Hibari has three additional fields
associated with it. See xref:hibari-data-model[] and
link:hibari-contributor-guide.en.html[Hibari Contributor’s Guide] for
details.

[[hibari-origins]]

Hibari’s Origins

Hibari was originally written by Cloudian, Inc., formerly Gemini
Mobile Technologies, to support mobile messaging and email services.
Hibari was released outside of Cloudian under the Apache Public
License version 2.0 in July 2010.

Hibari has been deployed by multiple telecom carriers in Asia and
Europe. Hibari may lack some features such as monitoring, event and
alarm management, and other “production environment” support services.
Since telecom operator has its own data center support infrastructure,
Hibari’s development has not included many services that would be
redundant in a carrier environment.

We hope that Hibari’s release to the open source community will close
those functional gaps as Hibari spreads outside of carrier data
centers.

Summary of Hibari’s Main Features

	A Hibari cluster is a distributed system.

	A Hibari cluster is linearly scalable.

	A Hibari cluster is highly available.

	All updates are durable.

	All updates are strongly consistent.

	All client operations are lockless.

	A Hibari cluster’s performance is excellent.

	Multiple client access protocols are available.

	Data is repaired automatically after a server failure.

	Cluster configuration can be changed at any time.

	Data is automatically rebalanced.

	Heterogeneous hardware support is easy.

	Micro-transactions simplify creation of robust client applications.

	Per-table configurable performance options are available.

[[acid-base-hibari]]

The “ACID vs. BASE” Spectrum and Hibari

Important

We strongly believe that “ACID” and “BASE” properties exist on a
spectrum and are not exclusively one or the other (black-or-white)
properties.

Most database users and administrators are familiar with the acronym
ACID: Atomic, Consistent, Independent, and Durable. Now, consider an
alternative method of storing and managing data, BASE:

	Basically available

	Soft state

	Eventually consistent

For an
link:http://queue.acm.org/detail.cfm?id=1394128[exploration of ACID and BASE properties (at ACM Queue)], see:

BASE: An Acid Alternative
Dan Pritchett
ACM Queue, volume 6, number 3 (May/June 2008)
ISSN: 1542-7730
http://queue.acm.org/detail.cfm?id=1394128

When both strict ACID and strict BASE properties are placed on a
spectrum, they are at the opposite ends. However, a distributed
database system can fit anywhere in the middle of the spectrum.

A Hibari cluster lies near the ACID end of the ACID/BASE spectrum. In
general, Hibari’s design will always favors consistency and durability
of updates at the expense of 100% availability in all situations.

[[cap-theorem-and-hibari]]

The CAP Theorem and Hibari

Warning

Eric Brewer’s “CAP Theorem”, and its proof by Gilbert and Lynch, is
a tricky thing. It’s nearly impossible to cleanly apply the purity
of logic to the dirty world of real, industrial computing systems.
We strongly suggest that the reader consider the CAP properties as
a spectrum, one of balances and trade-offs. The distributed
database world is not black and white, and it is important to know
where the gray areas are.

See the
link:http://en.wikipedia.org/wiki/CAP_theorem[Wikipedia article about the CAP theorem]
for a summary of the theorem, its proof, and related links.

CAP Theorem (postulated by Eric Brewer, Inktomi, 2000)
Wikipedia
http://en.wikipedia.org/wiki/CAP_theorem

Hibari chooses the C and P of CAP. It utilizes chain replication
technique and it always guarantees strong consistency. Hibari also
includes an Erlang/OTP application specifically for detecting network
partitions, so that when a network partition occurs, the brick nodes
in the opposite side of the partition with the active master will be
removed from the chains to keep the strong consistency guarantee.

See xref:admin-server-and-network-partition[] for details.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hibari’s Main Features in Broad Detail

=== Distributed system

Multiple machines can participate in a single cluster. The maximum
size of a Hibari cluster has not yet been determined. A practical
limit of approximately 200-250 nodes is likely.

Any server node can handle any client request, forwarding a request to
the correct server node when necessary. Clients maintain enough state
to send their queries directly to the correct server node in all
common cases.

=== Scalable system

The total storage and processing capacity of a Hibari cluster
increases linearly as machines are added to the cluster.

=== Durable updates

Every key update is written and flushed to stable storage (via the
fsync() system call) before sending acknowledgments to the client.

=== Consistent updates

After a key’s update is acknowledged, no client in the cluster can see
an older version of that key. Hibari uses the “chain replication”
algorithm to maintain consistency across all replicas of a key.

All data written to disk include MD5 checksums; the checksums are
validated on each read to avoid sending corrupted data to the client.

[[lockless-client-api]]
=== Lockless client API

The Hibari client API requires that all operations (read queries
operations and/or update operations) be self-contained within a single
client request. Therefore, locks are not implemented because they are
not required.

Inside Hibari, each key-value pair also contains a ``timestamp’’
value. A timestamp is an integer. Each time the key is updated, the
timestamp value must increase. (This requirement is enforced by all
server nodes.)

In many database systems, if a client requires guarantees that a key has
not changed since the last time it was read, then the client acquires
a lock (or lease) on the key. In Hibari, the client’s update
specifies the timestamp of the last read attempt of the key:

	If the timestamp matches the server, the operation is permitted.

	If the timestamp does not match the server’s timestamp, then the
operation is not permitted, and the new timestamp is returned to the
client.

It is recommended that all Hibari nodes use NTP to synchronize their
system clocks. The simplest Hibari client API uses timestamps based
upon the OS system clock for timestamp values. This feature can be
bypassed, however, by using a slightly more complex client API.

However, Hibari’s overload detection and work-dumping algorithms will
use the OS system clock, regardless of which client API is used. All
system clocks, client and server, be synchronized to be within roughly
1 second of each other.

=== High availability

Each key can be replicated multiple times (configurable on a per-table
basis). As long as one copy of the key survives, all operations on
that key are permitted. A cluster can survive multiple cluster node
failures and still maintain full data integrity.

The cluster membership application, called the Hibari Admin Server,
runs as an active/standby application on one or more of the server
nodes. The Admin Server’s configuration and private state are also
maintained in Hibari server nodes. Shared storage such as NFS, shared
SCSI/Fibre Channel LUNs, or replicated block devices are not required.

If the Admin Server fails and is restarted on a standby node, the rest
of the cluster can continue normal operation. If another brick fails
while the Admin Server is restarting, then clients may see service
interruptions (usually in the form of timeouts) until the Admin Server
has finished restarting and can react to the failure.

=== Multiple Client Protocols

Hibari supports many client protocols for queries and updates:

	A native Erlang API, via Erlang’s native message-passing mechanism

	Amazon S3 protocol, via HTTP

	UBF, Joe Armstrong’s ``Universal Binary Format’’ protocol, via TCP

	UBF via several minor variations of TCP transport

	UBF over JSON-RPC, via HTTP

	JSON-encoded UBF, via TCP

Protocols under development:

	Memcached, via TCP

	UBF over Thrift, via TCP

	UBF over Protocol Buffers, via TCP

Most of the client access protocols are implemented using the
Erlang/OTP application behavior. By separating each access protocol
into separate OTP applications, Hibari’s packaging is quite flexible:
packaging can add or remove protocol support as desired. Similarly,
protocols can be stopped and started at runtime.

[[overview-high-performance]]
=== High performance

Hibari’s performance is competitive with other distributed,
non-relational databases such as HBase and Cassandra, when used with
similar replication and durability configurations. Despite the
constraints of durable writes and strong consistency, Hibari’s
performance can exceed those databases on some workloads.

IMPORTANT: The metadata of all keys stored by the brick, called the
``key catalog’‘, are stored in RAM to accelerate commonly-used
operations. In addition, non-zero values of the “expiration_time” and
non-empty values of “flags” are also stored in RAM (see
xref:sql-definition-hibari[]). As a consequence, a multi-million key
brick can require many gigabytes of RAM.

=== Automatic repair

Replicas of keys are automatically repaired whenever a cluster node
crashes and restarts.

=== Dynamic configuration

The number of replicas per key can be changed without service
interruption. Likewise, replication chains can be added or removed
from the cluster without service interruption. This permits the
cluster to grow (or shrink) as workloads change. See
xref:chain-migration[] for more details.

=== Data rebalancing

Keys will be automatically be rebalanced across the cluster without
service interruption. See xref:chain-migration[] for more details.

=== Heterogeneous hardware support

Each replication chain can be assigned a weighting factor that will
increase or decrease the percentage of a table’s key space relative to
all other chains. This feature can permit use of cluster nodes with
different CPU, RAM, and/or disk capacities.

=== Micro-Transactions

Under limited circumstances, operations on multiple keys can be given
transactional commit/abort semantics. Such micro-transactions can
considerably simplify the creation of robust applications that keep
data consistent despite failures by both clients and servers.

[[per-table-config-perf-options]]
=== Per-table configurable performance options

Each Hibari table may be configured with the following options to
enhance performance ... though each of these options has a
corresponding price to pay.

	RAM-based storage: All data (both keys and values) may be stored in
RAM, at the expense of increased RAM consumption.
Disk is used still used to log all updates, to protect against
a catastrophic power failure.

	Asynchronous writes: Use of the fsync() system call can be disabled
to improve performance, at the expense of data loss in a system
crash or power failure.

	Non-durable updates: All update logging can be disabled to improve
performance, at the expense of data loss when all nodes in a
replication chain crash.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Building A Hibari Database

=== Defining a Schema

Hibari is a key-value database. Unlike a relational DBMS, Hibari
applications do not need to create a schema. The only application
requirement is that all its tables be created in advance, see
xref:creating-new-tables[] below.

[[hibari-data-model]]
=== The Hibari Data Model

If a Hibari table were represented within an SQL database, it would
look something like this:

[[sql-definition-hibari]]
.SQL-like definition of a Hibari table
include::texts-src/hibari-sql-definition.txt[]

Hibari table names use the Erlang data type ``atom’‘. The types of
all key-related attributes are presented below.

.Types of Hibari table key-value attributes
include::texts-src/hibari-key-value-attrs.txt[]

include::texts-src/hibari-key-value-attrs-expl.txt[]

The practical constraints on maximum value blob size are affected by
total blob size and frequency of large blob access. For example,
storing an occasional 64MB value blob is different than a 100% write
workload of 100% 64MB value blobs. The Hibari client API does not
have a method to update or fetch less than the entire value blob, so a
brick can be blocked for many seconds if it tried to operate on (for
example) even a single 4GB blob. In addition, other processes can be
blocked by ‘busy_dist_port’ events while processing big value blobs.

=== Hibari’s Client Operations

Hibari’s basic client operations are enumerated below.

add:: Set a key/value/expiration/flags only if the key does not already exist.
delete:: Delete a key
get:: Get a key’s timestamp and value
get_many:: Get a range of keys
replace:: Set a key/value/expiration/flags only if the key does exist
set:: Set a key/value/expiration/flags
txn:: Start of a micro-transaction

Each operation can be accompanied by operation-specific flags. Some
of these flags include:

witness:: Do not return the value blob. (get, get_many)
must_exist:: Abort micro-transaction if key does not exist.
must_not_exist:: Abort micro-transaction if key does exist.
{testset, TS}:: Perform the action only if the key’s current timestamp
exactly matches TS. (delete, replace, set, micro-transaction)

For details of these operations and lesser-used per-operation flags,
see:

	xref:micro-transactions[]

	link:hibari-contributor-guide.en.html[Hibari Contributor’s Guide]

=== Indexes

Hibari does not support automatic indexing of value blobs. If an
application requires indexing, the application must build and maintain
those indexes.

[[creating-new-tables]]
=== Creating New Tables

New tables can be created by two different methods:

	Via the Admin Server’s status server. Follow the “Add a table” link
at the bottom.

	Using the Erlang shell.

For details on the Erlang shell API and detailed explanations of the
table options presented in the Admin server’s HTTP interface, see the
link:hibari-contributor-guide.en.html[Hibari Contributor’s Guide]

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hibari Architecture

From a logical point of view, Hibari’s architecture has three layers:

	Top layer: consistent hashing

	Middle layer: chain replication

	Bottom layer: the storage brick

This section discusses each of these major layers in detail, starting
from the bottom and working upward.

.Logical architecture diagram; physical hosts/bricks are color-coded with 5 colors
svgimage::images/logical-architecture1[align=”center”, scaledwidth=”80%”]

.Logical architecture diagram, alternative perspective
svgimage::images/logical-architecture-alt[align=”center”, scaledwidth=”80%”]

Bricks, Physical and Logical

The word “brick” has two different meanings in a Hibari system:

	An entire physical machine that has Hibari software installed,
configured, and (hopefully) running.

	A logical software entity that runs inside the Hibari application
that is responsible for managing key-value pairs.

[[the-physical-brick]]

The physical brick

The phrase “physical brick” and “machine” are interchangeable, most of
the time. Hibari is designed to react correctly to the failure of any
part of the machine that the Hibari application is running:

	disk

	power supply

	CPU

	network

Hibari is designed to take advantage of low-cost, off-the-self
commodity servers.

A physical brick is the basic unit of failure. Data replication (via
the chain replication algorithm) is responsible for protecting data,
not redundant equipment such as dual power supplies and RAID disk
subsystems. If a physical brick crashes for any reason, copies of
data on other physical bricks can still be used.

It is certainly possible to decrease the chances of data loss by using
physical bricks with more expensive equipment. Given the same number
of copies of a key-value pair, the chances of data loss are less if
each brick has multiple power supplies and RAID 1/5/6/10 disk. But
risk of data loss can also be reduced by increasing the number of data
replicas (“chain length”) using cheaper, non-redundant server
hardware.

The logical brick

A logical brick is a software entity that runs within a Hibari
application instance on a physical brick. A single Hibari physical
brick can support dozens or (potentially) hundreds of logical bricks,
though limitations of CPU, RAM, and/or disk capacity can impose a
smaller limit.

A logical brick maintains RAM and disk data structures to store a
collection of key-value pairs. The keys are maintained in
lexicographic sorting order.

The replication technique used by Hibari, chain replication, maintains
identical copies of key-value pairs across multiple logical bricks.
The number of copies of a key-value pair is exactly equal to the
length of the chain. See the next subsection below for more details.

It is possible to configure Hibari to place all of the logical bricks
for the same chain onto the same physical brick. This practice can be
useful in a developer’s environment, but it is impractical for
production networks: such a configuration does not have any physical
redundancy, and therefore it poses a greater risk of data loss.

[[write-ahead-logs]]

Write-Ahead Logs

By default, all logical bricks will record all updates to a
write-ahead log. Used by many database systems, a write-ahead log
(WAL) appears to be an infinitely-sized log where all important events
(e.g. all write and delete operations) are appended to the end of the
log. The log is considered write-ahead if a log entry is written
prior to any significant processing by the application.

[[write-ahead-logs-in-hibari]]

Write-ahead logs in the Hibari application

Two types of write-ahead logs are used by the Hibari application.
These logs cooperate with each other to provide several benefits to
the logical brick.

There are two types of write-ahead logs:

	The shared common log. This single write-ahead log instance provides
durability guarantees to all logical bricks within the server node
via the fsync() system call.

	Individual private logs. Each logical brick maintains its own private
write-ahead log instance. All metadata regarding keys in the
logical brick are stored in the logical brick’s private log.

All updates are written first to the common log, usually in a
synchronous manner. At a later time, update metadata is lazily copied
from the common log to the corresponding brick’s private log.
Value blobs (for bricks that store value blobs on disk)
will remain in the common log and are managed by
the scavenger, see xref:scavenger[].

svgimage::images/private-and-common-logs[align=”center”, scaledwidth=”80%”]

[[two-wal-types]]

Two types of write-ahead logs

The two log types cooperate to support a number of useful properties.

	Data durability in case of system crash or power failure. All
synchronous writes to the ``common log’’ are guaranteed to be
flushed to stable storage.

	Performance enhancement by limiting fsync() usage. After a
logical brick writes data to the common log, it will request an
fsync(). The common log will combine fsync() requests from
multiple bricks into a single system call.

	Performance enhancement at logical brick startup. A brick’s private
log stores only that bricks key metadata. Therefore, at startup
time, the logical brick does not scan data maintained by other
logical bricks. This can be a very substantial time savings as the
amount of metadata managed by all logical bricks grows over time.

	Performance enhancement by separating synchronous writes from
asynchronous writes. If the common log’s storage is on a separate
device, e.g. a write-optimized flash memory block device, then all
of the fsync() calls can finish much faster. During later
processing of the asynchronous/lazy copying of key metadata from the
common log to individual private logs can take advantage of OS dirty
page write coalescing and other I/O optimizations without
interference by fsync(). These copies are performed roughly once
per second.

[[wal-dirs-and-files]]

Directories and files used by write-ahead logs

Each write-ahead log is stored on disk as a collection of large files
(default = 100MB each). Each file in the log is identified by a log
sequence number and is called a log sequence file.

Log sequence files are append-only and are never written again.
Consequently, data in a log sequence file is never overwritten. Any
disk space reclaimed by checkpoint and scavenger operations is done by
copying data from old log sequence files and appending to new log
sequence files. Once the new log sequence file(s) is flushed to
stable storage, the old log sequence file(s) can be deleted.

When a log sequence file reaches its maximum size, the current log
file is closed and a new one is opened with a monotonically increasing
log serial number.

All log files for a write-ahead log are grouped under a single
directory called, hlog.{log-name}, where {log-name} is the
name of the brick or of the common log. These directories are stored
under the var/data subdirectory of the application’s installation
path, /usr/local/TODO/TODO/var/data (by default).

The maximum log file size (brick_max_log_size_mb in the
central.conf file) is advisory only and is not enforced as a hard
limit.

Reclaiming disk space used by write-ahead logs

In practice, infinite storage is not yet available. The Hibari system
uses two mechanisms to reclaim unused disk space:

	The checkpoint mechanism, see xref:checkpoints[].

	The scavenger mechanism, see xref:scavenger[].

Write-ahead log serial numbers

Each item written in a write-ahead log is assigned a serial number.
If the brick is in standalone or head roles, then the serial
number will be assigned by that brick. For downstream bricks, the
serial number assigned by the head brick will be used.

The serial number mechanism is used to ensure that a single unique
ordering of log items will be written to each brick log. In certain
failure cases, log items may be re-sent down the chain a second time,
see xref:failure-middle-brick[].

// JWN: Does the above mechanism “to ensure that a single unique ordering”
// applies to both common log and private log?

[[chains]]
=== Chains

A chain is the unit of data replication used by the
link:http://www.usenix.org/events/osdi04/tech/renesse.html[``chain replication’’ technique as described in this paper]:

Chain Replication for Supporting High Throughput and Availability
Robbert van Renesse and Fred B. Schneider
USENIX OSDI 2004 conference proceedings
http://www.usenix.org/events/osdi04/tech/renesse.html

Data replication algorithms can be separated into two basic families:

	State machine replication

	Quorum replication

The chain replication algorithm is from the state machine family of
replication algorithms. It is a variation of the familiar
``master/slave’’ replication algorithm, where all updates are sent to
a master node and then copies are sent to zero or more slave nodes.

Chain replication requires a very specific ordering of nodes (which
store copies of data) and the messages passed between them. The
diagram below depicts the “key update” message flow in a chain of
length three.

[[diagram-write-path-3]]
.Message flow in a chain for a key update
svgimage::images/write-path-3[align=”center”, scaledwidth=”80%”]

If a chain is of length one, then the same brick assumes both ``head’’
and ``tail’’ roles simultaneously. In this case, the brick is called
a ``standalone’’ brick.

.Message flow for a key update to a chain of length 1
svgimage::images/write-path-1[align=”center”, scaledwidth=”30%”]

To maintain the property strong consistency, a client must read data
from the tail brick in the chain. A read processed by any other brick
member would permit the client to read an update that has not yet been
processed by all bricks and therefore could result in a strong
consistency violation. Such a violation is frequently called a
``dirty read’’ in other database systems.

.Message flow for a read-only key query
svgimage::images/read-path-3[align=”center”, scaledwidth=”80%”]

[[bricks-outside-chain-replication]]
==== Bricks outside of chain replication

During Hibari’s development, we encountered a problem of managing the
state required by the Admin Server. If data managed by chain
replication requires the Admin Server to be running, how can the Admin
Server read its own data? There is a ``chicken and the egg’’
dependency problem that must be solved.

// JWN: Why wasn’t Mnesia used for the Admin Server’s storage
// implementation?

The solution is simple: do not use chain replication to manage the
Admin Server’s data. Instead, that data is replicated using a simple
``quorum replication’’ technique. These bricks all have names starting
with the string “bootstrap”.

A brick must be in ``standalone’’ mode to answer queries when it is
used outside of chain replication. See xref:brick-roles[] for details
on the standalone role.

=== Tables

A table is thing that divides the key namespace within Hibari. If you
need to have two different keys called “foo” but have different
values, you store each “foo” key in a separate table. The same is
true in other database systems.

Hibari’s implementation uses one or more replication chains to store
the data for one table.

.Relationship between tables, chains, and bricks.
svgimage::images/table-chain-brick[align=”center”, scaledwidth=”70%”]

[[micro-transactions]]
=== Micro-Transactions

In a single request, a Hibari client may send multiple update
operations to the cluster. The client has the option of requesting
``micro-transaction’’ semantics for those updates: if there are no
errors, then all updates will be applied atomically. This behaves
like the ``transaction commit’’ behavior supported by most relational
databases.

On the other hand, if there is an error while processing one of the
update operations, then all of update operations will fail. This
behaves like the ``transaction abort’’ behavior supported by most
relational databases.

Unlike most relational databases, Hibari does not have a transaction
manager that can coordinate ACID semantics for arbitrary read and
write operations across any row in any table. In fact, Hibari has no
transaction manager at all. For this reason, Hibari calls its limited
transaction feature ``micro-transactions’‘, to distinguish this
feature from other database systems.

Hibari’s micro-transaction support has two important limitations:

	All keys involved in the transaction must be stored in the same
replication chain (and therefore by the same brick(s)).

	Operations within the micro-transaction cannot see updates by other
operations within the the same micro-transaction.

.Four keys in the “footab” table, distributed across two chains of length three.
[id=”footab-example”]
svgimage::images/micro-transaction-example[align=”center”, scaledwidth=”70%”]

In the diagram above, a micro-transaction can be permitted if it
operates on only the keys “string1” & “string4” or only the keys
“string2” and “string3”. If a client were to send a micro-transaction
that operates on keys “string1” and “string3”, the micro-transaction
will be rejected: key “string3” is not stored by the same chain as the
key “string1”.

.Valid micro-transaction: all keys managed by same chain
[id=”valid-utxn”]

	[txn,

	{op = replace, key = “string1”, value = “Hello, world!”},
{op = delete, key = “string4”}

]

.Invalid micro-transaction: keys managed by different chains
[id=”invalid-utxn”]

	[txn,

	{op = replace, key = “string1”, value = “Hello, world!”},
{op = delete, key = “string2”}

]

The client does not have direct control over how keys are distributed
across chains. When a table is defined and created, its configuration
specifies the algorithm used to map a {TableName, Key} pair to a
specific chain.

// JWN: This might be a good place to briefly explain the benefits of
// using a key prefix and how it is beneficial to (some) applications.

NOTE: See
link:hibari-contributor-guide.en.html#add-a-new-table[Hibari Contributor’s Guide,
“Add a New Table” section]
for more information about table configuration.

=== Distribution: Workload Partitioning and Fault Tolerance

[[consistent-hashing-example]]
==== Partitioning by consistent hashing

To spread computation and storage workloads across all servers in the
cluster, Hibari uses a technique called ``consistent hashing’‘. This
hashing technique attempts to distribute a table’s key space evenly
across all chains used by that table.

IMPORTANT: The word ``consistent’’ has slightly different meanings
relative to ``consistent hashing’’ and ``strong consistency’‘. The
consistent hashing algorithm is a commonly-used algorithm for key ->
storage location calculations. Consistent hashing does not affect the
``eventual consistency’’ or ``strong consistency’’ semantics of a
database system.

See the xref:footab-example[] for an example of a table with two
chains.

See
link:hibari-contributor-guide.en.html#add-a-new-table[Hibari Contributor’s Guide,
“Add a New Table” section]
for details on valid options when creating new tables.

===== Consistent hashing algorithm

Hibari uses the following steps in its consistent hashing algorithm
implementation:

	Calculate the ``hashing prefix’‘, using part or all of the key as
input to the next step.

	** This step is configurable, using built-in functions or by providing

	a custom implementation function.

** Built-in prefix functions:
* Null: use entire key
* Fixed length, e.g. 4 byte or 8 byte constant length prefix.
*** Variable length: use separator character ‘/’ (configurable)

such that hash prefix is found between the first two (also
configurable) ‘/’ characters. E.g. If the key is /user/bar,
then the string /user/ is used as the hash prefix.

	Calculate the MD5 checksum of the hashing prefix and then convert
the result to the unit interval, 0.0 - 1.0, using floating point
arithmetic.

	Consult the unit interval -> chain map to calculate the chain name.

	** This map contains a tree of {StartValue, EndValue, ChainName} tuples.

	For example, {0.0, 0.5, footab_ch1} will map the interval
(0.0, 0.5] to the chain named footab_ch1.

	*** The mapping tree’s construction is affected by the chain weighting

	factor. The weighting factor allows some chains to store more
than other chains.

	Use the operation type to calculate the brick name.

** For read-only operations, choose the tail brick.
** For update operations, choose the head brick.

===== Consistent hashing algorithm use within the cluster

	Hibari clients use the algorithm to calculate which chain must

handle operations for a key. Clients obtain this information via
updates from the Hibari Admin Server. These updates allow the client
to send its request directly to the correct server in most use cases.

	Servers use the algorithm to verify that the client’s calculation

was correct.
** If a client sends an operation to the wrong brick, the brick will
forward the operation to the correct brick.
** If a client sends a list of operations such that some bricks are
stored on the brick and other keys are not, an error is returned to
the client. Micro-transactions are not supported across chains.

===== Changing consistent hashing configuration dynamically

Hibari’s Admin Server will allow changes to the consistent hashing
algorithm without service interruption. Such changes are applied on a
per-table basis:

	Adding or removing chains to the unit interval -> chain map.

	Modifications of the chain weighting factor.

	Modifying the key -> hashing prefix calculation function.

See the xref:chain-migration[] section for more information.

==== Multiple replicas for fault tolerance

For fault tolerance, data replication is required. As explained in
xref:chains[], the basic unit of failure is the brick. The chain
replication algorithm will maintain replicas of keys in a strongly
consistent manner across all bricks: head, middle, and tail bricks.

To be able to tolerate F failures without data loss or service
interruption, each replication chain must be at least F+1 bricks
long. This is in contrast to quorum replication family algorithms,
which typically require 2F+1 replica bricks.

// JWN: Would it be helpful to put a note that typically “3” is the
// recommended number of replicas?

===== Changing chain length configuration dynamically

Hibari’s Admin Server will allow changes to a chain’s length without
service interruption. Such changes are applied on a per-chain basis.
See the xref:chain-length-change[] section for more information.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

The Admin Server Application

The Hibari ``Admin Server’’ is an OTP application that runs in an
active/standby configuration within a Hibari cluster. The Admin
Server is responsible for:

	Monitoring the health of each brick in the cluster,
see xref:brick-lifecycle-fsm[].

	Monitoring the status of each chain in the cluster,
see xref:chain-lifecycle-fsm[].

	Managing administrative changes of chain -> brick mappings,
see xref:chain-length-change[].

	Managing data rebalancing, see xref:chain-migration[].

	Communicating cluster status to Hibari client nodes.

	Other administrative tasks, such as the creation of new tables.

Only one instance of the Admin Server is permitted to run within the
cluster at a time. The Admin Server runs in an ``active/standby’’
configuration that is used in many high-availability clustered
applications. The nodes that are eligible to participate in the
active/standby configuration are configured via the main Hibari
configuration file; see xref:admin-server-in-central-conf[] and
xref:central-conf-parameters[] for more details.

=== Admin Server Active/Standby Implementation

The active/standby application failover is handled by the Erlang/OTP
application controller. No extra third-party software is required.
See Chapter 7, “Applications”, and Chapter 9, “Distributed
Applications”, in the “OTP Design Principles User’s Guide” at
http://www.erlang.org/doc/design_principles/distributed_applications.html.

[[bootstrap-bricks]]
=== Admin Server’s Private State: the Bootstrap Bricks

On each active and standby node, there is a hint file called
Schema.local which contains the name of the ``bootstrap bricks’‘.
These bricks operate outside of the chain replication algorithm to
provide redundant, persistent state for the Admin Server application.
See xref:bricks-outside-chain-replication[] for a short summary of
standalone bricks.

All of the Admin Server’s private state is stored in the bootstrap
bricks. This includes:

	All table definitions and their configuration, e.g. consistent
hashing parameters.

	Status of all bricks and all chains.

	Operational history of all bricks and all chains.

With the help of the Erlang/OTP application controller and the Hibari
Partition Detector application, only a single instance of the Admin
Server is permitted to run at any one time. That single application
instance has full control over the data stored in the bootstrap bricks
and therefore does not have to manage concurrent updates to bootstrap
brick data.

=== Admin Server Crash and Restart

When the Admin Server application is stopped (e.g. node shutdown) or
crashes (e.g. software bug, power failure), all of the tasks outlined
at the beginning of xref:admin-server-app[] are halted. In theory,
the 20-30 seconds that are required for the Admin Server to restart
could mean 20-30 seconds of negative service impact to Hibari clients.

In practice, however, Hibari clients almost never notice when an Admin
Server instance crashes and restarts. Hibari clients do not need the
Admin Server when the cluster is stable. The Admin Server is only
necessary when the state of the cluster changes. Furthermore, as far
as clients are concerned, clients are only affected when bricks crash.
Other cluster change events, such as when chain replication repair
finished, do not directly impact clients and thus can wait for the
Admin Server to finish restarting.

A Hibari client will only notice an Admin Server crash if another
logical brick crashes while the Admin Server is temporarily out of
service. The reason is due to the nature of the Admin Server’s
responsibilities. When chain is broken by a brick failure, the
remaining bricks must have their roles reconfigured to put the chain
back into full service. The Admin Server is the only automated entity
that is permitted to change the role of a brick. For more details,
see:

	xref:brick-lifecycle-fsm[]

	xref:chain-lifecycle-fsm[], and

	xref:chain-repair[].

[[admin-server-and-network-partition]]
=== Admin Server and Network Partition

One feature of the Erlang/OTP application controller is that it is not
robust in event of a network partition. To prevent multiple Admin
Server apps running simultaneously, another application is bundled
with Hibari: the Partition Detector. See xref:partition-detector[]
for an overview and explanation of the ‘A’ and ‘B’ physical networks.

As described briefly in xref:cap-theorem-and-hibari[], Hibari does
support the “Partition tolerance” aspect of Eric Brewer’s CAP theorem.
More specifically, if a network partition occurs, and a Hibari cluster
is split into two or more pieces, not all clients on both/all sides of
the network partition will be able to access Hibari services.

For the sake of discussion, we assume the cluster has been split into
two fragments by a single partition, though any number of fragments may
happen in real use. We also assume that nodes on both sides of the
partition are configured in standby roles for the Admin Server.

If a network partition event happens, the following events will soon
follow:

	The OTP application controller for some/all
central.conf-configured nodes will notice that communication with
the formerly active Admin Server is now impossible.

	Using internal logic, each application controller will make a
decision of which standby node should move to active status.

	Each active status node will start an instance of the Admin Server.

Note that all steps above will happen in parallel on nodes on both
sides of the partition. If this situation is permitted to continue,
the invariant of “Admin Server may only run on one node at a time”
will be violated. However, with the help of the Partition Detector
application, multiple Admin Server instances can be detected and
halted.

UDP broadcasts on the ‘A’ and ‘B’ networks can help the Admin Server
determine if it was restarted due to an Admin Server crash or by a
network partition. In case of a network partition on network ‘A’, the
broadcasts on network ‘B’ can indicate that another Admin Server
process remains alive.

If multiple Admin Server instances are detected, the following logic
is used:

	If an Admin Server is in its “running” phase, then any other any
Admin Server instance that is still in its “initialization” phase
will halt.

	If multiple Admin Server instances are all in the “initialization”
phase, then only the Admin Server instance with the smallest name
(in lexicographic sorting order) is permitted to run: all other
instances will halt.

==== Importance of two physically separate networks

IMPORTANT: It is possible for both the ‘A’ and ‘B’ networks to
partition simultaneously. The Admin Server and Partition Detector
applications cannot always correctly react to such events. It is
extremely important that the ‘A’ and ‘B’ networks be separate physical
networks, including: separate physical network interfaces on each
brick, separate cabling, separate network switches, and all other
network-related equipment also be physically separate.

It is possible to reduce the reliance on multiple physical networks
and the Partition Detector application, but such techniques have not
been added to Hibari yet. Until an alternative network partition
mitigation mechanism is implemented, we strongly recommend the proper
configuration of the Partition Detector app and all of its hardware
requirements.

=== Admin Server, Network Partition, and Client Access

When a network partition event occurs, there are two cases that affect
a client’s ability to work with the cluster.

	The client machine is on the same side of the partition as the Admin
Server.

	The client machine is on the opposite side of the partition as the
Admin Server.

If the client machine is on the same side of the partition, the client
may see no interruption of service at all. If the Admin Server is
restarted in reaction to the partition event, there may be a small
window of time (e.g. 20-30 seconds) where requests might fail because
the Admin Server has not yet reconfigured chains on this side of the
partition.

If the client machine is on the opposite side of the partition, then
the client will not have access to the Admin Server and may not have
access to properly configured chains. If a chain lies entirely
entirely on the same side of the partition as the client, then the
client can continue to use that chain successfully. However, any
chain that is “cut in two” by the partition cannot support updates by
any client.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hibari System Information: Configuration Files, Etc.

Hibari’s system information is stored in one of two places. The first
is the application configuration file, central.conf. By default,
this file is stored in TODO/{version number}/etc/central.conf.

The second location is within Hibari server nodes themselves. This
kind of configuration, stored inside the “bootstrap” bricks, makes it
easy to share data with all nodes in the cluster.

Many of configuration values in central.conf will be the same on all
nodes in a Hibari cluster. Given this reality, why not store those
items in Hibari itself? The biggest problem comes when the
application is first starting. See
xref:bricks-outside-chain-replication[] for an overview of why it
isn’t easy to store all configuration data inside Hibari itself.

In the future, it’s likely that many of the configuration items in the
central.conf file will move to storage within Hibari itself.

=== central.conf File Syntax and Usage

Each line of the central.conf file has the form

parameter: value

where parameter is the name of the configuration option being set and
value is the value that the configuration option is being set to.

Valid data types for configuration settings are INT (integer), STRING
(string), and ATOM (one of a pre-defined set of option names, such as
on or off). Apart from data type restrictions, no further valid
range restrictions are enforced for central.conf parameters.

All time values in central.conf (such as delivery retry intervals or
transaction timeouts) must be set as a number of seconds.

Blank lines and lines beginning with the pound sign (#) are ignored.

IMPORTANT: To apply changes that you have made to the central.conf
file, you must restart the server. There are exceptions to this rule,
but it’s one of the cleanup/janitor tasks to access
central.conf using a standard set of APIs, e.g. always use the
gmt_config_svr API.

[[central-conf-parameters]]
=== Parameters in the central.conf File

A detailed explanation of each of the items in central.conf can be
found at
link:../misc-files/central-conf.pdf[Hibari central.conf Configuration Guide].

=== Admin Server Configuration

Configuration for the Hibari ``Admin Server’’ is stored in three
places:

. The central.conf file
. The Schema.local file
. Inside the ``bootstrap’’ bricks

[[admin-server-in-central-conf]]
==== Admin Server entries in the central.conf file

The following entries in the central.conf file are used by the
Hibari Admin Server:

	admin_server_distributed_nodes

	** This option specifies which nodes in the Hibari cluster are

	eligible to run the Admin Server. Hibari server nodes not included
in this list cannot run the Admin Server.

	** Active/standby service is provided by the Erlang/OTP platform’s

	application management facility.

	The Schema.local file

	** This file provides a list of {logical brick, Hibari server node name}

	tuples that store the Admin Server’s private state. Each brick
name in this list starts with the prefix bootstrap_copy followed
by an integer.

	The ``bootstrap’’ bricks

	** Each of these bricks store an independent copy of all Hibari

	cluster state: table definitions, table -> chain mappings,
start & stop history, etc.

	** Data in each of the bootstrap bricks is not maintained by chain

	replication. Rather, quorum-style replication is used.
See xref:bricks-outside-chain-replication[].

=== Configuration Not Stored in Editable Config Files

All table and chain configuration parameters are stored within the
Admin Server’s ``schema’‘. The schema contains information on:

	Table names and options (e.g. blob values stored in RAM or on disk,
sync/async disk logging)

	Table -> chain mappings

	Chain -> brick mappings

Much of this information can be seen in HTML form by pointing a Web
browser at TCP port 23080 (default) of any Hibari server node. For
example:

	.Admin Server Top-Level Status & Admin URL

	http://hibari-server-node-hostname:23080/

Your Web browser should be redirected automatically to the Admin
Server’s top-level status & admin page.

NOTE: The APIs that expose this are, for the most part, already
written. We need more “friendly” wrapper funcs as part of the “try
this first” set of APIs for administration.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

The Life of a (Logical) Brick

All logical bricks within a Hibari cluster go through the same set of
lifecycle events. Each is described in greater detail in this
section.

	Brick initialization and operation states, described by a finite
state machine.

	Brick roles within chain replication, also described by a finite
state machine.

	Periodic housekeeping tasks performed by logical bricks and their
internal support services, e.g. checkpoints and the ``scavenger’‘.

[[brick-lifecycle-fsm]]
=== Brick Lifecycle Finite State Machine

The lifecycle of each Hibari logical brick goes through a set of
states defined by a finite state machine (OTP gen_fsm behavior) that
is executed by a process within the Admin Server application.

.Logical brick lifecycle finite state machine
svgimage::images/brick-fsm[align=”center”]

.Logical brick lifecycle FSM states
unknown;;

This is the initial state of the FSM. Because the Admin Server may
crash or be restarted at any time, this state is used by the Admin
Server when it has not been running long enough to determine the
state of the logical brick.

	pre_init;;

	A brick moves itself to this state when it has finished scanning its
private write-ahead log (see xref:write-ahead-logs[]) and therefore
knows the state of all keys that it manages.

	repairing;;

	In chain replication, the repairing state is used to synchronize a
a newly started/restart brick with the rest of the chain. At the
end of this state, the brick is 100% in sync with all other active
members of the chain. Repair is initiated by the Admin Server’s
chain monitor that is responsible for the chain.

	ok;;

	The brick moves itself to this state when repair has finished. The
brick is now in service and capable of servicing Hibari client
requests. Client requests will be rejected if the brick is in any
other state.
* If managed by chain replication, this brick is eligible to be put

into service as a full member of a replication chain.
See xref:brick-roles[].

	If managed by quorum replication, some external entity must change
the logical brick’s state from pre_init -> ok. Hibari’s Admin
Server automates this task for the `bootstrap_copy`* bricks.
The present implementation of the Admin Server does not manage
quorum replication bricks outside of the Admin Server’s private
use.

	disk_error;;

	A disk error has occurred, for example a missing file or directory
or MD5 checksum error. Administrator intervention is required to
move a brick out of the disk_error state: shut down the entire
Hibari server, kill the logical brick manually, or use the
brick_chainmon:force_best_first_brick() function manually.

[[chain-lifecycle-fsm]]
=== Chain Lifecycle Finite State Machine

The chain FSM (OTP gen_fsm behavior) is executed by a process within
the Admin Server application. All state transitions are triggered by
changes in the state of each member bricks’ state, into or out of the
‘ok’ state. See xref:brick-lifecycle-fsm[] for details.

.Chain replication finite state machine
svgimage::images/chain-fsm[align=”center”]

.Chain lifecycle FSM states
unknown;;

The state of the chain is unknown. Information regarding chain members is
unavailable. Because the Admin Server may
crash or be restarted at any time, this state is used by the Admin
Server when it has not been running long enough to determine the
state of the chain.
It is possible that the chain was in degraded or healthy state
before the crash and therefore Hibari client operations may be
serviced while in this state.

	unknown_timeout;;

	This intermediate state is used by the Admin Server before moving
automatically to another state.

	stopped;;

	All bricks in the chain are crashed or believed to have crashed.
Service to Hibari clients will be interrupted.

	degraded;;

	Some (but not all) bricks in the chain are in service. The Admin
Server will wait for another chain member to enter its pre_init
state before chain repair can start.

	healthy;;

	All bricks in the chain are in service.

[[brick-roles]]
=== Brick ``Roles’’ Within A Chain

Each brick within a chain has a role. The role will be changed by the
Admin Server whenever it detects that the chain’s state has changed.
These roles are:

	head;;

	The brick is first in the chain, i.e. at the ``head’’ of the chain’s
ordered list of bricks.

	tail;;

	The brick is last in the chain, i.e. at the ``tail’’ of the chain’s
ordered list of bricks.

	middle;;

	The brick is neither the ``head’’ nor ``tail’’ of the chain.
Instead, the brick is somewhere in the middle of the chain.

	standalone;;

	In a chain of length 1, the ``standalone’’ brick is a brick that
acts both as a ``head’’ and ``tail’’ brick simultaneously.

There is one additional attribute that is given to a brick in a
cluster. Its name ``official tail’‘.

	official tail;;

	The official tail brick has two duties for the chain:
* It handles read-only queries to the chain.
* It sends replies to the client for all update operations that are
sent to the head of the chain.

the chain. Hibari clients are not aware of “tail” bricks that are
undergoing repair. Any client request that is sent to a repairing
state brick will be rejected.

See xref:diagram-write-path-3[] for an example of a healthy chain of
length three.

[[brick-init]]
=== Brick Initialization

A logical brick does not maintain an on-disk data structure, such as a
binary tree or B-tree, to keep track of the keys it stores. Instead,
each logical brick maintains that metadata entirely in RAM.
Therefore, the only time that the metadata in the private write-ahead
log is ever read is at brick initialization time, i.e. when the brick
restarts.

The contents of the private write-ahead log are used to repopulate the
brick’s ``key catalog’‘, the list of all keys (and associated
metadata) stored by the brick.

When a logical brick is started, all of the log sequence files in
the private log are read, starting from the oldest and ending with the
newest. (See xref:wal-dirs-and-files[].) The total amount of data
required at startup can be quite small or it can be hundreds of
gigabytes. The factors that influence the amount of data in the
private log are:

	The total number of keys stored by the logical brick.

	** More keys means that the log sequence file created by a checkpoint

	operation will be larger.

	The size of the brick_check_checkpoint_max_mb configuration parameter
in the central.conf config file.

When the log scan is complete, construction of the brick’s in-RAM key
catalog is finished.

See xref:checkpoints[] for details on brick checkpoint operations.

[[chain-repair]]
=== Chain Repair

When a chain is in the degraded state, new bricks that have entered
their pre_init state can become eligible to join the chain. All
new bricks are added to the end of the chain and undergo the chain
repair process.

.Chain of length 2 in degraded state, a third brick under repair
svgimage::images/read-write-path-3-repair[align=”center”, scaledwidth=”80%”]

The protocol used between upstream and downstream bricks is an
iterative protocol that has two phases in a single iteration.

1. The upstream brick sends a subset of {Key, Timestamp} tuples
downstream.
* The downstream brick deletes keys from its key catalog that do not
appear in the upstream’s subset.
* The downstream brick replies with the list of keys that it does not
have or have older timestamps.
2. The upstream bricks sends full information (all key metadata and
value blobs) for all keys requested by the downstream in step #1.
* The downstream brick acknowledges the new/replacement keys.

When the repair is finished, the Admin Server will change the roles of
some/all chain members to make the repairing brick the new tail of the
chain.

Only one brick may be repaired at one time. In theory it is possible
to repair multiple bricks simultaneously, but the extra code
complexity that would be required to do so has been judged to be too
expensive (so far).

==== Chain reordering when moving from degraded -> healthy states

[[chain-reordering-middle-brick-fails]]
.Chain order after a middle brick fails and is repaired (but not yet reordered)
svgimage::images/chain-fail-repair-reorder[align=”center”, scaledwidth=”70%”]

After a middle brick fails and is repaired, the chain’s ordering is:
brick 1 -> brick 3 -> brick 2. According to the algorithm in the
original Chain Replication paper, the final chain ordering is
expected. The Hibari implementation adds another step: reordering the
chain.

For chains longer than length 1, when the Admin Server moves the chain
from degraded -> healthy state, the Admin Server will reorder the
the chain to match the schema’s definition for the healthy chain
order. The assumption is that the Hibari administrator wishes the
chain use a very specific order when it is in the healthy state.
For example, if the chain’s workload were extremely read-intensive,
the machine for logical brick #3 could have faster CPU or faster disks
than the other bricks in the chain. To take full advantage of the
extra capacity, the chain should be reordered as soon as possible.

However, it is not easy to reorder the chain. The replication of a
client update during the reordering could get lost and violate Hibari’s
strong consistency guarantees. The following algorithm is used to
preserve consistency:

	Set all bricks to read-only mode.

	Wait for all updates to sync to disk at each brick and to progress
downstream fully from head -> tail.

	Set brick roles to reflect the final desired order.

4. Set all bricks to read-write mode.
** Client do operations that contain updates will be resubmitted

(via the client-side API function brick_server:do()) to the
cluster.

Typically, executing this algorithm takes less than one second.
However, because the head brick is forced temporarily into read-only
mode, client update requests will be delayed until read-only mode is
turned off.

Client update requests submitted during read-only mode will be queued
by the head brick and will be processed when read-only mode is turned
off. Client read-only requests are not affected by read-only mode.

// JWN: I think it might be helpful to mention/ to explain (but maybe
// not here) that Client updates may actually persist even though the
// client stopped waiting and returned a timeout to the “application”.
// A Timeout on Client updates can not guarantee the change was
// applied or not applied to the Hibari tables.

[[checkpoints]]
=== Brick Checkpoint Operations

As updates are received by a brick, those updates are written to the
brick’s private write-ahead log. During normal operations, private
write-ahead log is write-only: the data there is only read at logical
brick initialization time.

The checkpoint operation is used to reclaim disk space in the brick’s
private write-ahead log. See xref:wal-dirs-and-files[] for a
description of log sequence files and xref:central-conf-parameters[]
for details on the central.conf configuration file.

.Brick checkpoint processing steps
1. When the total log size (i.e. total size of all log files in the

brick’s private log’s shortterm storage area) reaches the size of the
brick_check_checkpoint_max_mb parameter in central.conf, a
checkpoint operation is started.
* Assume that the current log sequence file number is N.

	Two log sequence files are created, N+1 and N+2.

	Checkpoint data is written to log sequence number N+1.

	New updates by clients and chain replication are written to log
sequence number N+2.

	Contents of the brick’s in-RAM key catalog are dumped to log
sequence file N+1, subject to the bandwidth constraint of the
brick_check_checkpoint_throttle_bytes configuration parameter.

	When the checkpoint is finished and flushed to disk, all log
sequence files with a number less than or equal to N are deleted.

IMPORTANT: Each logical brick will checkpoint itself as its private
log grows. It is possible that multiple logical bricks can schedule
checkpoint operations simultaneously. The bandwidth limitation of the
brick_check_checkpoint_throttle_bytes parameter is applied to the
sum of all writes by all checkpoint operations.

[[scavenger]]
=== The Scavenger

As described in xref:write-ahead-logs[], all updates from all logical
bricks are first written to the ``common log’‘. The most common of
these updates are:

	Metadata updates, e.g. key insert or key delete, by a logical brick.

	A new value blob associated with a metadata update such as a Hibari

client set operation.
** This type is only applicable if the brick is configured to store
value blobs on disk. This configuration is defined (by default) on a
per-table basis and is then propagated to the chain and brick level by
the Admin Server.

As explained in xref:write-ahead-logs[], the write-ahead log provides
infinite storage at a logical level. But in the physical level, disk
space must be reclaimed somehow. Because the common log is shared by
multiple logical bricks, the technique described in xref:checkpoints[]
cannot be used by the common log.

A process called the ``scavenger’’ is used to reclaim disk space in
the common log. By default, the scavenger runs at 03:00 daily. The
steps it executes are described below.

.Common log scavenger processing steps
1. For all bricks that store value blobs on disk, scan each logical
brick’s in-RAM key catalog to create a list of all value blob storage
locations.
2. Sort the value blob location list by log sequence number.
3. Identify all log sequence files with a “live data ratio” of at
least X percent (default = 90%, see
brick_skip_live_percentage_greater_than configuration parameter).
4. For all log files where live data ratio is less than *X*%, copy
value blobs to new log sequence files. This copying is limited by the
amount of bandwidth configured by brick_scavenger_throttle_bytes in
central.conf.
5. When all blobs have been copied out of an old log sequence file and
flushed to stable storage, update the storage locations in the in-RAM
key catalog, then delete the old log sequence file.

ifdef::theme[]
image:images/scavenger-techpubs.png[]
endif::theme[]
ifndef::theme[]
image:images/scavenger-techpubs.png[width=”65%”]
endif::theme[]

IMPORTANT: The value of the brick_skip_live_percentage_greater_than
configuration parameter determines how much additional disk space is
required to store X gigabytes of live data. If the parameter is
N, then 100-N percent of all common log disk space may be wasted
by storing dead data.

IMPORTANT: Additional disk space is required to log all updates that
are made after the scavenger has run. This includes space in the
common log as well as in each logical brick private logs (subject to
the general limit of the brick_check_checkpoint_max_mb configuration
parameter.

IMPORTANT: The current implementation of Hibari requires that
plenty of disk space _always_ be available for write-ahead logs and
for scavenger operations. We strongly recommend that the
brick_scavenger_temp_dir configuration item use a different file
system than the application_data_dir parameter. This directory
stores temporary files required for sorting and other operations that
would otherwise require large amounts of RAM.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Dynamic Cluster Reconfiguration

[[add-table]]
=== Adding a Table

A table can be added at any time, using either of two methods:

	Use the Admin Server’s HTTP service: follow the “Add a table” hyperlink
at the bottom of the top-level page.

	

	Use the brick_admin CLI interface at the Erlang shell. See

link:hibari-contributor-guide.en.html#add-a-new-table[Hibari Contributor’s Guide,
“Add a New Table” section].

[[remove-table]]
=== Removing a Table

NOTE: The current Hibari implementation does not support removing
a table.

In theory, most of the work of removing a table is already done:
chains that are abandoned after a migration are shut down
* Brick pinger processes are stopped.
* Chain monitor processes are stopped.
* Bricks are stopped.
* Brick data directories are removed.

All that remains is to update the Admin Server’s schema to remove
references to the table.

[[chain-length-change]]
=== Changing Chain Length (Changing Replication Factor)

The Hibari Admin Server manages each chain as an independent data
replication entity. Though Hibari clients view multiple chains that
are associated with a single table, each chain is actually independent
of the other chains. It is possible to change the length of one chain
without changing any others. For long term operation, such
differences do not make sense. But during short periods of cluster
reconfiguration, such differences are possible.

A chain’s length is determined by specifying a list of bricks that are
members of that chain. The order of the list specifies the exact
chain order when the chain is in the healthy state. By adding or
removing bricks from a chain definition, the length of the chain can
be changed.

A chain is defined by the Erlang 2-tuple of
{ChainName, ListOfBricks}, where each brick in ListOfBricks is a
2-tuple {BrickName, NodeName}. For example, a chain of length two
called footab_ch1 could be defined as:

{footab_ch1, [{footab1_ch1_b1, 'gdss1@box-a‘}, {footab1_ch1_b1, 'gdss1@box-b‘}]}

The current definition of all chains for table TableName can be
retrieved from the Admin Server using the
brick_admin:get_table_chain_list() function, for example:

%% Get a list of all tables currently defined.
> brick_admin:get_tables().
[tab1]

%% Get list of chains in ‘tab1’ as they are currently in operation.
> brick_admin:get_table_chain_list(tab1).
{ok,[{tab1_ch1,[{tab1_ch1_b1,’gdss1@machine-1‘},

{tab1_ch1_b2,’gdss1@machine-2‘}]},

	{tab1_ch2,[{tab1_ch2_b1,’gdss1@machine-2‘},

	{tab1_ch2_b2,’gdss1@machine-1‘}]}]}

This above chain list for table tab1 corresponds to the chain and
brick layout below.

.Table tab1: Two chains of length two across two Erlang nodes on two physical machines
svgimage::images/tab1-2x2[align=”center”, scaledwidth=”70%”]

NOTE: To change the definition of a chain, use the
change_chain_length/2 or change_chain_length/3 functions. For
documentation, see
link:hibari-contributor-guide.en.html#changing-chain-length[Hibari Contributor’s Guide,
“Changing Chain Length” section]

NOTE: When specifying a new chain definition, at least one brick from
the current chain must be included.

// JWN: Is it dangerous to allow an admin the opportunity to NOT SPECIFY the head
// of the chain in the new chain definition or to SPECIFY only a brick
// that is under repair? I guess I see an opportunity for some
// “dynamic” (and not just static) pre-conditions that should/could be
// checked FIRST before starting to execute the changes.

[[chain-change-same-algorithm]]
==== Chain changes: same algorithm, different tasks.

The same brick repair technique is used to handle all three of the
following cases:

	adding a brick to a chain

	brick failure

	removing a brick from a chain

==== Adding a brick to a chain

When a brick B is added to a chain, that brick is treated as if it
was a member of the chain that had crashed long ago and has now been
restarted. The same repair algorithm is used to synchronize data on
brick B that is used to repair bricks that were formerly in service
but since crashed and restarted. See xref:chain-repair[] for a
description of the Hibari repair mechanism.

==== Brick failure

If a brick fails, the Admin Server must remove it from the chain by
reordering the chain. The general order of operations are:

	Set new roles for the chain’s bricks, starting from the end of the
chain and working backward.

	Broadcast the new chain membership to all Hibari clients.

If a Hibari client attempts to send an operation to a brick during
step #2 and before the new chain info from step #2 arrives, that
client may send the operation to the wrong brick. Hibari servers will
automatically forward the query to the correct brick. Due to network
latencies and asynchronous message passing, it is possible that the
query be forwarded multiple times before it arrives at the correct
brick.

Specific details of how chain replication handles brick failure can be
found in van Renesse and Schneider’s paper, see xref:chains[] for
citation details.

===== Failure of a head brick

If the head brick fails, then the first middle brick is promoted to the
head role. If there is no middle brick (i.e. the length of the chain
was two), then the tail brick is promoted to a standalone role (chain
length is one).

===== Failure of a tail brick

If the tail brick fails, then the last middle brick is promoted to the
tail role. If there is no middle brick (i.e. the length of the chain
was two), then the head brick is promoted to a standalone role (chain
length is one).

[[failure-middle-brick]]
===== Failure of a middle brick

The failure of a middle brick requires the most complex recovery
procedure.

	Assume that the chain is three bricks: A -> B -> C.

	** If the chain is longer (more bricks upstream of A and/or more

	bricks downstream of C), the procedure remains the same.

	Brick C is configured to have its upstream brick be A.

	Brick A is configured to have its downstream brick be C.

	The head of the chain (brick A or the head brick upstream of A)
requests a log flush of all unacknowledged writes downstream. This
step is required to re-send updates that were processed by A but
have not been received by C because of middle brick B‘s
failure.

	Brick A waits until it receives a write acknowledgment from the
tail of the chain. Once received, all bricks in the chain have
synchronously written all items to their write-ahead logs in the
correct order.

==== Removing a brick from a chain

Removing a brick B permanently from a chain is a simple operation.
Brick B is
handled the same way that any other brick failure is handled: the
chain is simply reconfigured to exclude B. See
xref:chain-reordering-middle-brick-fails[] for an example.

IMPORTANT: When a brick B is removed from a chain, all data from
brick B will be deleted when the operation is successful. At this
time, the API does not have an option to allow B‘s data to be
preserved.

// JWN: Wah ... a typo could be very dangerous. Delayed deletion of
// the data and/or some other protective mechanism could be helpful.

[[chain-migration]]
=== Chain Migration: Rebalancing Data Across Chains

There are several cases where it is desirable to rebalance data across
chains and bricks in a Hibari cluster:

	Chains are added or removed from the cluster

	Brick hardware is changed, e.g. adding extra disk or RAM capacity

	A change in a table’s consistent hashing algorithm configuration
forces data (by definition) to another chain.

The same technique is used in all of these cases: chain migration.
This mirrors the same design philosophy that’s used for handling chain
changes (see xref:chain-change-same-algorithm[]): use the same
algorithm to handle multiple use cases.

==== Example: Migrating from three chains to four

[[chain-migration-3to4]]
.Chain migration from 3 chains to 4 chains
svgimage::images/chain-migration-3to4[align=”center”, scaledwidth=”80%”]

In the example above, both the 3-chain and 4-chain configurations used
equal weighting factors. When all chains use the same weighting
factor (e.g. 100), then the consistent hashing map in the ``before’’
and ``after’’ cases look something like the figure below.

[[migration-3to4]]
.Migration from three chains to four chains
svgimage::images/migration-3to4[align=”center”, scaledwidth=”70%”]

It doesn’t matter that chain #4’s total area within the unit interval
is divided into three regions. What matters is that chain #4’s total
area is equal to the regions of the other three chains.

==== Example: Migrating from three chains to four with unequal weighting

The diagram xref:migration-3to4[] demonstrates how a migration would
work when all chains have an equal weighting factor, e.g. 100. If
instead, the new chain had a weighting factor of only 50, then the
distribution of keys to each chain would look like this:

.Migration from three chains to four with unequal chain weighting factors
[options=”header”]
|=========
| Chain Name | Total % of keys before/after migration | Total unit interval size before/after migration
| Chain 1 | 33.3% -> 28.6% | 100/300 -> 100/350
| Chain 2 | 33.3% -> 28.6% | 100/300 -> 100/350
| Chain 3 | 33.3% -> 28.6% | 100/300 -> 100/350
| Chain 4 | 0% -> 14.3% (4.8% in each of 3 regions) | 0/300 -> 50/350 (spread across 3 regions)
| Total | 100% -> 100% | 300/300 -> 350/350
|=========

For the original three chains, the total amount of unit interval
devoted to those chains is (100+100+100)/350 = 300/350. The 4th
chain, because its weighting is only 50, would be assigned 50/350 of
the unit interval. Then, an equal amount of unit interval is taken
from the original chains and reassigned to chain #4, so (50/350)/3 of
the unit interval must be taken from each original chain.

==== Hotspot migration

With the lowest level API, it is possible to assign “hot” keys to
specific chains, to try to balance a handful of keys that are very
frequently accessed from a large number of keys that are very
infrequently accessed. The table below gives an example that builds
upon xref:migration-3to4[]. We assume that our “hot” key is mapped
onto the unit interval at position 0.5.

.Consistent hashing lookup table with three chains of equal weight and a fourth chain with an extremely small weight
[options=”header”]
|=========
| Unit interval start | Unit interval end | Chain name
| 0.000000 | 0.333333... | Chain 1
| 0.333333... | 0.5 | Chain 2
| 0.5 | 0.500000000000001 | Chain 4
| 0.500000000000001 | 0.666666... | Chain 2
| 0.666666... | 1.0 | Chain 3
|=========

The table above looks almost exactly like the “Before Migration” half
of xref:migration-3to4[]. However, there’s a very tiny “hole” that is
punched in chain #2’s space that maps key hashes in the range of 0.5
to 0.500000000000001 to chain #4.

[[adding-removing-client-nodes]]
=== Adding/Removing Client Nodes

It is not strictly necessary to formally configure a list of all
Hibari client nodes that may use a Hibari cluster. However,
practically speaking, it is useful to do so.

To bootstrap itself to be able to use Hibari servers, a Hibari client
must be able to:

	Communicate with other Erlang nodes in the cluster.

	Receive “global hash” information from the cluster’s Admin
Server.

To solve both problems, the Admin Server maintains a list of Hibari
client nodes. (Hibari server nodes do not need this mechanism.) For
each client node, a monitor process on the Admin Server polls the node
to see if the gdss or gdss_client application is running. If the
client node is running, then problem #1 (connecting to other nodes in
the cluster) is automatically solved by using net_adm:ping/1.
Problem #2 is solved by the client monitor calling
brick_admin:spam_gh_to_all_nodes/0.

The Admin Server’s client monitor runs approximately once per second,
so there may be a delay of up to a couple of seconds before a
newly-started Hibari client node is connected to the rest of the
cluster and has all of the table info required to start work.

When a client node goes down, an OTP alarm is raised until the client
is up and running again.

Two methods can be used to view and change the client node monitor
list:

	Use the Admin Server’s HTTP service: follow the “Add/Delete a client
node monitor” hyperlink at the bottom of the top-level page.

	Use the Erlang CLI to use these functions:

** brick_admin:add_client_monitor/1
** brick_admin:delete_client_monitor/1
** brick_admin:get_client_monitor_list/0

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

The Partition Detector Application

For multi-node Hibari deployments, Hibari includes a network
monitoring feature that watches for partitions within the cluster, and
attempts to minimize the database consequences of such partitions.
This Erlang/OTP application is called the Partition Detector.

You can configure the network monitoring feature in the central.conf
file. See xref:central-conf-parameters[] for details.

IMPORTANT: Use of this feature is mandatory for a multi-node Hibari
deployment to prevent data corruption in the event of a network
partition. If you don’t care about data loss, then as an ancient
Roman might say, ``Caveat emptor.’’
Or in English, ``Let the buyer beware.’‘

For the network monitoring feature to work properly, you must first
set up two separate networks, Network A and Network B, that connect to
each of your Hibari physical bricks. The networks must be set up as
follows:

	Network A and Network B must be physically separate networks, with

different IP and broadcast addresses. See the diagram below for a two
node cluster.
* Network A must be the network used for all Hibari data communications.
* Network A should have as few physical failure points as
possible. For example, a single switch or load balancer is preferable
to two switches cabled together.
* The separate Network B will be used to compare node heartbeat patterns.

IMPORTANT: For the network partition monitor to work properly, your
network partition monitor configuration settings must match as closely
as possible. Each Hibari physical brick must have unique IP addresses
on its two network interfaces (as required by all IP networks), but
all configurations must use the same IP subnets for the ‘A’ and ‘B’
networks, and all configurations must use the same network ‘A’
tiebreaker.

[[a-and-b-network-diagram]]
.Network ‘A’ and network ‘B’ diagram
svgimage::images/a-and-b-diagram[align=”center”, scaledwidth=”80%”]

=== Partition Detector Heartbeats

Through the partition monitoring application, Hibari nodes send
heartbeat messages to one another at the configurable
heartbeat_beacon_interval, and each node keeps track of heartbeat
history from each of the other nodes in the cluster. The heartbeats
are transmitted through both Network A and Network B. If node
gdss1@machine1 detects that the incoming heartbeats from
gdss1@machine2 are absent both on Network A and on Network B, then
gdss1@machine2 might have a problem. If the incoming heartbeats from
gdss1@machine2 fail on Network A but not on Network B, a partition on
Network A might be the cause. If heartbeats fail on Network B but not
Network A, then Network B might have a partition problem, but this is
less serious because Hibari data communication does not take place on
Network B.

Configurable timers on each Hibari node determine the interval at
which the absence of incoming heartbeats from another node is
considered a problem. If on node gdss1@machine1 no heartbeat has been
received from gdss1@machine2 for the duration of the configurable
heartbeat_warning_interval, then a warning message is
written to the application log of node gdss1@machine1. This warning
message can be triggered by missing heartbeats either on Network A or
on Network B; the warning message will indicate which node has not
been heard from, and over which network.

=== Partition Detector’s Tiebreaker

If on node gdss1@machine1 no heartbeat has been received from
gdss1@machine2 via Network A for the duration of the configurable
heartbeat_failure_interval, and if during that period heartbeats
from gdss1@machine2 continue to be received via Network B, then a
network partition is presumed to have occurred in Network A. In this
scenario, node gdss1@machine1 will attempt to ping the configurable
network_a_tiebreaker address. If gdss1@machine1 successfully pings
the tiebreaker address, then gdss1@machine1 considers itself to be
on the “correct” side of the Network A partition, and it continues
running. If by contrast gdss1@machine1 cannot successfully ping the
tiebreaker address, then gdss1@machine1 considers itself to be on
the “wrong” side of the Network A partition and shuts itself
down. Meanwhile, comparable calculations and decisions are being made
by node gdss1@machine2.

In a scenario where the network monitoring application determines that
a partition has occurred on Network B – that is, heartbeats are received
through Network A but not through Network B – then warnings are written
to the Hibari nodes’ application logs but no node is shut down.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Backup and Disaster Recovery

=== Backup and Recovery Software

At the time of writing, Hibari’s largest cluster deployment is:

	Well over 50 physical bricks

	Well over 4TB of disk space per physical brick

	Single data center, operated by a telecom carrier and integrated
with third-party monitoring and control software

If a backup were made of all data in the cluster, the biggest question
is, “Where would you store the backup?” Given the cluster’s purpose
(real-time email/messaging services), the quality of the data center’s
physical and software infrastructures, the length of the Hibari chains
used for physical data redundancy, the business factors influencing
the choice not to deploy a “hot backup” data center, and other
factors, Cloudian has not developed the backup and recovery software for
Hibari. Cloudian’s smaller Hibari deployments also resemble the largest
deployment.

However, we expect that backup and recovery software will be high
priorities for open source Hibari users. Together with the open
source users and developers, we expect this software to be developed
relatively quickly.

=== Disaster Recovery via Remote Data Centers

==== Single Hibari cluster spanning two data centers

It is certainly possible to deploy a single Hibari cluster across two
(or more) data centers. At the moment, however, there is only one way
of doing it: each chain of data replication must have a brick located
in each data center.

As a consequence of brick placement, it is mandatory that Hibari
clients pay the full round-trip latency penalty for each update. See
xref:diagram-write-path-3[] for a diagram; the “head” and “tail”
bricks would be in separate data centers, using WAN network
connectivity between them.

For some applications, strong consistency is a higher priority than
low latency (both for writes and possibly for reads, if the client is
not co-located in the same data center as the chain’s tail brick). In
those cases, such cross-data-center brick placement can make sense.

However, Hibari’s Admin Server cannot handle all failure scenarios,
especially when WAN connectivity is broken between data centers; more
programming work is required for the Admin Server to automate the
handling of all processes. Furthermore, Hibari’s basic design cannot
tolerate network partitions well, see xref:cap-theorem-and-hibari[]
and xref:admin-server-and-network-partition[]. If the Admin Server
were capable of handling WAN network partitions, it’s almost certain
that all Hibari nodes in one of the partitioned data centers would be
inactive.

==== Multiple Hibari clusters, one per data center

Conceptually, it’s possible to run multiple Hibari clusters, one per
data center. However, Hibari does not have the software required for
WAN-scale replication.

In theory, such software isn’t too difficult to develop. The tail
brick of each chain can maintain a log of recent updates to the
chain. Those updates can be transmitted asynchronously across a WAN
to another Hibari cluster in a remote data center. Such a scheme is
depicted in the figure below.

[[async-replication-try1]]
.A future scenario of asynchronous, cross-data-center Hibari replication
svgimage::images/async-replication-try1[align=”center”, scaledwidth=”80%”]

This kind of replication makes the most sense if “Data Center #1”
were in an active role and Data Center #2” were in a hot-standby
role. In that case, there would never be a “Data Center #2 Client”,
so there would be no problem of strong consistency violations by
clients accessing both Hibari clusters simultaneously. The only
consistency problem would be one of durability: the replay of async
update logs every N seconds would mean that up to N seconds of
updates within “Data Center #1” could be lost.

However, if clients access both Hibari clusters simultaneously, then
Hibari’s strong consistency guarantee would be violated. Some
applications can tolerate weakened consistency. Other applications,
however, cannot. For the those apps that must have strong
consistency, Hibari will require additional design and code.

TIP: A keen-eyed reader will notice that xref:async-replication-try1[]
is not fully symmetric. If clients in “Data Center #2” make updates
to the chain, then the same async update log maintenance and replay to
“Data Center #1” would also be necessary.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hibari Application Logging

NOTE: This chapter is outdated and will be rewritten by Hibari v0.6
release. Hibari now uses link:https://github.com/basho/lager#readme[Basho Lager]
for logging and the default location of the log files is:
<HIBARI_HOME>/logs/

The Hibari application log records application-related alerts,
warnings, and informational messages, as well as trace messages for
debugging. By default the application log is written to this file:

<HIBARI_HOME>/var/log/gdss-app.log

=== Format of the Hibari Application Log

Each log entry in the Hibari application log is composed of these
fields in this order, with vertical bar delimitation:

<PID>|<<ERLANGPID>>|<DATETIME>|<MODULE>|<LEVEL>|<MESSAGECODE>|<MESSAGE>

This Hibari application log entry format is not configurable. Each of
these application log entry fields is described in the table that
follows. The ``Position’’ column indicates the position of the field
within a log entry.

[options=”header”,cols=”^,^m,<”]
|=========
| Position | Field | Description
| 1 | <PID> | System-assigned process identifier (PID) of the process that generated the log message.
| 2 | <ERLANGPID> | Erlang process identifier.
| 3 | <DATETIME> | Timestamp in format %Y%m%d%H%M%S, where %Y = four digit year; %m = two digit month; %d = two digit date; %H = two digit hour; %M = two digit minute; and %S = two digit seconds. For example, 20081103230123.
| 4 | <MODULE> | The internal component with which the message is associated. This field is set to a minimum length of 13 characters. If the module name is shorter than 13 characters, spaces will be appended to the module name so that the field reaches the 13 character minimum.
| 5 | <LEVEL> | The severity level of the message. The level will be one of the following: ALERT, a condition requiring immediate correction; WARNG, a warning message, indicating a potential problem; INFO, an informational message indicating normal activity, and requiring no action; DEBUG, a highly granular, process-descriptive message potentially of use when debugging the application.
| 6 | <MESSAGECODE> | Integer code assigned to all messages of severity level INFO or higher. NOTE: This code is not yet defined in the Hibari open source release.
| 7 | <MESSAGE> | The message itself, describing the event that has occurred.
|=========

=== Application Log Example

Items written to the Hibari application log come from multiple sources:

	The Hibari OTP application

	Other OTP applications bundled with Hibari

	Other OTP applications within the Erlang runtime system,
e.g. kernel and sasl.

The <MESSAGE> field is free-form text. Application code can freely
add newline characters and various white-space padding wherever it
wishes. However, the file format dictates that a newline character
(ASCII 10) appear only at the end of the entire app log message.

The Hibari error logger must therefore reformat the text of the
<MESSAGE> field to remove newlines and to remove whitespace
padding. The result is not nearly as readable as the formatting
presented to the Erlang shell. For example, within the shell, a
message can look like this:

	=PROGRESS REPORT==== 12-Apr-2010::17:49:22 ===

	
	supervisor: {local,sasl_safe_sup}

	
	started: [{pid,<0.43.0>},

	{name,alarm_handler},
{mfa,{alarm_handler,start_link,[]}},
{restart_type,permanent},
{shutdown,2000},
{child_type,worker}]

Within the Hibari application log, however, the same message is
reformatted as line #2 below. The reformatted version is much more
difficult for a human to read than the version above, but the purpose
of the app log file is to be machine-parsable, not human-parsable.

8955|<0.54.0>|20100412174922|gmt_app |INFO|2190301|start: normal []
8955|<0.55.0>|20100412174922|SASL |INFO|2199999|progress: [{supervisor,{local,gmt_sup}},{started,[{pid,<0.56.0>},{name,gmt_config_svr},{mfa,{gmt_config_svr,start_link,[”../priv/central.conf”]}},{restart_type,permanent},{shutdown,2000},{child_type,worker}]}]
8955|<0.55.0>|20100412174922|SASL |INFO|2199999|progress: [{supervisor,{local,gmt_sup}},{started,[{pid,<0.57.0>},{name,gmt_tlog_svr},{mfa,{gmt_tlog_svr,start_link,[]}},{restart_type,permanent},{shutdown,2000},{child_type,worker}]}]
8955|<0.36.0>|20100412174922|SASL |INFO|2199999|progress: [{supervisor,{local,kernel_safe_sup}},{started,[{pid,<0.59.0>},{name,timer_server},{mfa,{timer,start_link,[]}},{restart_type,permanent},{shutdown,1000},{child_type,worker}]}]
[...skipping ahead...]
8955|<0.7.0>|20100412174923|SASL |INFO|2199999|progress: [{application,gdss},{started_at,gdss_dev2@bb3}]
8955|<0.98.0>|20100412174923|DEFAULT |INFO|2199999|brick_sb: Admin Server not registered yet, retrying
8955|<0.65.0>|20100412174923|SASL |INFO|2199999|progress: [{supervisor,{local,brick_admin_sup}},{started,[{pid,<0.98.0>},{name,brick_sb},{mfa,{brick_sb,start_link,[]}},{restart_type,permanent},{shutdown,2000},{child_type,worker}]}]
8955|<0.105.0>|20100412174924|DEFAULT |INFO|2199999|top of init: bootstrap_copy1, [{implementation_module,brick_ets},{default_data_dir,”.”}]
8955|<0.105.0>|20100412174924|DEFAULT |INFO|2199999|do_init_second_half: bootstrap_copy1
8955|<0.79.0>|20100412174924|SASL |INFO|2199999|progress: [{supervisor,{local,brick_brick_sup}},{started,[{pid,<0.105.0>},{name,bootstrap_copy1},{mfa,{brick_server,start_link,[bootstrap_copy1,[{default_data_dir,”.”}]]}},{restart_type,temporary},{shutdown,2000},{child_type,worker}]}]
8955|<0.105.0>|20100412174924|DEFAULT |INFO|2199999|do_init_second_half: bootstrap_copy1 finished

== Examining Latency in Production (Internal Event Tracing)

The Hibari source code has been annotated with over 400 tracepoints,
and they give the developer and system administrator for tracing
events through Hibari’s code. Those tracepoints are designed to be
extremely lightweight and can be enabled in production environment
without sacrificing performance.

Trace data can be collected via DTrace/SystemTap or Erlang’s tracing
mechanism. For more details, please refer
link:http://hibari.github.com/hibari-doc/hibari-contributor-guide.en.html#_hibari_internal_tracepoints[“Hibari internal tracepoints”]
section of Hibari Contributor’s Guide.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hardware and Software Considerations

As noted in xref:hibari-origins[], at the time of writing, Hibari has
been deployed exclusively in data centers run by telecom carriers.
All carriers have very specific requirements for integrating with its
existing deployment, network monitoring, alarm management, and other
infrastructures. As a result, many of those features have been
omitted to date from Hibari. With Hibari’s release into an “open
source environment”, we expect that these gaps will be closed.

Hibari’s carrier-centric heritage has also influenced the types of
hardware, networking gear, operating system, support software, and
internal Hibari configuration that have been used successfully to
date. Some of these practices will change as Hibari evolves from its
original use patterns. Until then, this section discusses some of the
things that a systems/network administrator must consider when
deploying a Hibari cluster.

Similarly, application developers must be very familiar with these
same issues. An unaware developer can create an application that uses
too many resources on under-specified hardware, causing problems for
developers, support staff, and application users alike. We wish
Hibari to grow and flourish in its non-relational DB niche.

[[brick-hardware]]
=== Notes on Brick Hardware

==== Lots of RAM is better

Each Hibari logical brick stores all information about its keys in
RAM. Both the logical brick’s private write-ahead log and the common
write-ahead log are not “disk-based data structures” in the typical
sense, such as on-disk hash tables or B-trees. Therefore, Hibari
bricks require a lot of RAM to function.

For more details, see:

	xref:overview-high-performance[]

	xref:per-table-config-perf-options[] ... if a table stores its value
blobs in RAM, it will consume more RAM than if those value blobs are
stored on disk.

	xref:hibari-data-model[]

	xref:brick-init[]

==== Lots of disk I/O capacity is better

By default, Hibari will write and flush each update to disk before
sending a reply downstream or back to the client. Hibari will perform
better on systems that have higher disk I/O capacity.

	Non-volatile/battery-backed cache on the disk controller(s) is
helpful, when combined with a write-back cache policy. The more
cache, the better. If the read/write ratio of the cache can be
changed, a default policy of 10/90 or 0/100 (i.e. skewed to writes)
is typically more helpful than a default 50/50 split.

	On-disk (volatile) cache on individual disks is not helpful.

	Faster spinning disks are more helpful than slower spinning disks.

	If using RAID, a large stripe width of e.g. 512KBytes or 1024KBytes
is usually more helpful than the (usually) smaller default stripe
width on most controllers.

	If using RAID, a hardware RAID implementation may be very slightly
helpful.

	RAID redundancy (e.g. RAID 1, 10, 5, 6) is not required by Hibari,
but it can help reduce the odds of failure of an individual physical
brick. If physical bricks do not use data redundant RAID
(e.g. RAID 0, concatenation), it’s a good idea to consider using
longer replication chains to compensate.

For more details, see:

	xref:the-physical-brick[]

	xref:per-table-config-perf-options[]

	xref:hibari-data-model[]

[[high-io-rate-devices]]
==== High I/O rate devices (e.g. SSD) may be used

Hibari has some support for high I/O rate devices such as solid state
disks, flash memory disks, flash memory storage cards, et al. There
is nothing in Hibari’s implementation that would preclude using
high-speed disk devices as the only storage for Hibari write-ahead
logs.

Hibari has a feature that can segregate high write I/O with fsync(2)
operations onto a separate high-speed device, and use cheaper &
lower-speed Winchester disk devices for bulk storage. This feature
has not yet been well-tested and optimized.

For more details, see:

	xref:write-ahead-logs[]

	xref:two-wal-types[]

==== Lots of disk storage capacity may be a secondary concern

More disks of smaller capacity are almost always more helpful than a
few disks of larger capacity. RAID 0 (no data redundancy) or RAID 10
(“mirror” data redundancy) is useful for combining the I/O capacity of
multiple disks into a single logical volume. Other RAID levels, such
as 5 or 6, can be used, though at the expense of higher write I/O
overhead.

For more details, see:

	xref:write-ahead-logs[]

[[considerations-cpu]]
==== Lots of CPU capacity is a secondary concern

Hibari storage bricks do not, as a general rule, require large amounts
of CPU capacity. The largest single source of CPU consumption is in
MD5 checksum calculation. If the data objects most commonly written &
read by your application are small, then multi-socket, multi-core CPUs
are not required.

Each Hibari logical brick is implemented within the Erlang virtual
machine as a single gen_server process. Therefore, each logical
brick can (generally speaking) only fully utilize one CPU core. If
your Hibari cluster appears to have CPU-utilization imbalance, then
the recommended strategy is to change the chain placement policy of
the chains. For example, there are two methods for arranging a chain
of length three across three physical bricks:

[[1-chain-striped-across-3-bricks]]
The first example shows one chain striped across three physical
bricks. If the read/write ratio for the chain is extremely high
(i.e. most operations are reads), then most of the CPU activity (and
perhaps disk I/O, if blobs are stored on disk) will be directed to the
“Chain 1 tail” brick and cause a CPU utilization imbalance.

	.One chain striped across three physical bricks

	
Physical Brick X | Physical Brick Y | Physical Brick Z |

Chain 1 head -> Chain 1 middle -> Chain 1 tail

[[3-chains-striped-across-3-bricks]]
The second example shows the same three physical bricks but with three
chains striped across them. In this example, each physical brick is
responsible for three different roles: head, middle, and tail.
Regardless of the read/write operation ratio, all bricks will utilize
roughly the same amount of CPU.

	.Three chains striped across three physical bricks

	
Physical Brick T | Physical Brick U | Physical Brick V |

Chain 1 head -> Chain 1 middle -> Chain 1 tail ||
Chain 2 tail || Chain 2 head -> Chain 2 middle ->
Chain 3 middle -> Chain 3 tail || Chain 3 head ->

In multi-CPU and multi-core systems, a side-effect of using more
chains (and therefore more bricks) is that the Erlang virtual machine
can schedule more logical brick computation across a larger number of
cores and CPUs.

=== Notes on Networking

Hibari works quite well using commodity “Gigabit Ethernet” interfaces.
Lower latency (and higher cost) networking gear, such as Infiniband,
is not required.

For production use, it is _strongly recommended_ that all Hibari
servers be configured with two physical network interfaces, cabling,
switches, etc. For more details, see:

	xref:partition-detector[]

==== Client protocol load balancing

The native Erlang client, via the gdss or gdss_client OTP
applications, do not require any load balancing. The Erlang client
already is a participant in the consistent hashing algorithm (see
xref:consistent-hashing-example[]). The Admin Server distributes
updates to a table’s consistent hash map each time cluster membership
or chain/brick status changes.

All other client access protocols are “dumb”, by comparison. Take for
example the Amazon S3 protocol service. There is no easy way for a
Hibari cluster to convey to a generic HTTP client how to calculate
which brick to send a query to. The HTTP redirect mechanism could be
used for this purpose, but other protocols don’t have an equivalent
feature. Also, the latency overhead of sending a redirect is far
higher than Hibari’s solution to this problem.

Hibari’s solution is simple: the Hibari server-side “dumb” protocol
handler uses the same native Erlang client that any other Hibari
client app written in Erlang users. That client is capable of making
direct routing decisions. Therefore, the “dumb” protocol handler
within a Hibari node acts as a translating proxy: it uses the “dumb”
client access protocol on one side and uses the native Erlang client
API on the other.

.Hibari “dumb” protocol proxy
svgimage::images/dumb-protocol-proxy[align=”center”, scaledwidth=”80%”]

The deployed “state of the art” for such dumb protocols is to use a
TCP load balancer (aka a “layer 4” load balancer) to spread dumb
client workload across multiple Hibari dumb protocol servers.

=== Notes on Operating System

Hibari servers operate on top of the Erlang virtual machine. In
principle, any operating system that is supported by the Erlang
virtual machine can support Hibari.

==== Supported Operating Systems

In practice, Hibari is supported on the following operating systems:

	Linux x86_64
** Red Hat Enterprise Linux 5.x and 6.x (RHEL 5.3 is used in

production and QA environments within Cloudian, Inc.)

** CentOS 5.x and 6.x
** Ubuntu 12.04 LTS or newer

	Linux ARMv7 (32 bit)
** Ubuntu 12.04 LTS or newer
** Hibari runs on Calxeda EnergyCore based super high-density,

scale-out cluster

	Unix Solaris variants
** Joyent SmartOS (64 bit)

	Mac OS X

	FreeBSD (though not currently in a jail environment, due to some TCP
services getting EPROTONOSUPPORT errors)

The versions recently tested for Hibari by the community:

	CentOS 6.3 (x86_64)

	Ubuntu 12.04 LTS (ARMv7)

	Joyent SmartOS 20130221 (64 bit)

To take advantage of RAM larger than 4GB, we recommend that you use
a 64-bit version of your OS’s kernel, 64-bit versions of the user
runtime, and a 64-bit version of the Erlang/OTP runtime.

[[os-readahead-configuration]]
==== OS Readahead Configuration

Some operating systems have support for OS-based “readahead”:
pre-fetching blocks of a file with the expectation that those blocks
will soon be requested by the application. Properly configured,
readahead can substantially raise throughput and reduce latency on
many read-heavy I/O workloads.

The read I/O workloads for Hibari fall into two major categories:

	Extremely predictable sequential read-only I/O during brick
initialization (see xref:brick-init[]).

	Extremely unpredictable random read I/O for fetching value blobs
from disk.

The first I/O pattern can usually benefit a great deal from an aggressive
readahead policy. However, an aggressive readahead policy can have
the opposite effect on the second I/O pattern. Readahead policies
under Linux, for example, are defined on a per-block device basis and
does not change in response to application runtime behavior.

If your OS supports readahead policy configuration, we recommend using
a small read and then measuring its effect with a real or simulated
workload with the real Hibari server.

[[disk-scheduler-configuration]]
==== Disk Scheduler Configuration

We recommend that you experiment with disk scheduler configuration on
relevant OSes such as Linux. The “deadline” scheduler is likely to
provide better performance characteristics.

=== Notes on Supporting Software

A typical “server” type installation of a Linux or FreeBSD OS is
sufficient for Hibari. The following is an incomplete list of other
software packages that are necessary for Hibari’s installation and/or
runtime.

	NTP

	Erlang/OTP version R13B04

	Either “lynx” or “elinks”, a text-based Web browser

// JWN: This seems like a good place to mention patches that are
// needed beyond R13B04 ... busy dist port?

[[ntp-config-strongly-recommended]]
==== NTP configuration of all Hibari server and client nodes

It is strongly recommended that all Hibari server and client nodes
have the NTP daemon (Network Time Protocol) installed, properly
configured, and running.

	The brick_simple client API uses the OS clock for automatic
generation of timestamps for each key update. The application
problems caused by badly out-of-sync OS clocks can be easily avoided
by NTP.

	If a client’s clock is skewed by more than the
brick_do_op_too_old_timeout configuration attribute in
central.conf (units = milliseconds), then the brick will silently
discard the client’s operation. The only symptoms of this are:

	** Client-side timeouts when using the brick_simple, brick_server,

	or brick_squorum APIs.

** Increasing n_too_old statistic counter on the brick.

=== Notes on Hibari Configuration

There are several reasons why disk I/O rates can temporarily increase
within a Hibari physical brick:

	Logical brick checkpoints for increased write I/O ops, see
xref:checkpoints[]

	The common log “scavenger” for increased read and write I/O ops,
see xref:scavenger[]

	Chain replication repair, see xref:chain-repair[]

	** As the upstream/”repairer” brick, the extra read I/O ops,

	if the brick stores value blobs on disk

** As the downstream/”repairee” brick, extra write I/O ops

The Hibari central.conf file contains parameters that can limit the
amount of disk bandwidth used by most of these operations.

See also:

	xref:considerations-cpu[]

	xref:central-conf-parameters[]

=== Notes on Monitoring a Hibari Cluster

The Admin Server’s status page contains current status information
regarding all tables, chains, and bricks in the cluster. By default,
this service listens to TCP port 23080 and is reachable via HTTP at
http://any-hibari-node-name:23080/. HTTP redirect will steer your
browser to the Admin Server node.

	Hypertext links for each table, chain, and brick can show more
detailed info on each entity.

	The “Dump History” link at the bottom of the Admin Server’s HTTP
status page can show operations history across multiple bricks,
chains, and/or tables by using the regular expression feature.

	Each logical brick maintains counters of each type of Hibari client
op primitive. At present, these stats are only exposed via the HTTP
status server or by the native Erlang interface, but it’s possible
to expose these stats via SNMP and other protocols in a
straightforward manner.

	** Stats include: number of add, replace, set, get,

	get_many, delete, and micro-transactions.

==== Hibari Admin Server HTTP status

For example screen shots of the Admin Server status pages (a work in
progress), see link:./misc-screenshots/admin-server-status/index.html[].

See also:

	xref:chain-lifecycle-fsm[]

	xref:brick-lifecycle-fsm[]

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Administering Hibari Through the API

	Add a new table

	Delete a table

	Change to a single chain:

** Add one or more bricks (increase replication factor)
** Remove one or more bricks (decrease replication factor)
* Change to a single table.
** Add a new chain
** Remove a chain
** Change the chain weighting factor
** Change consistent hashing parameters

[[add-a-new-table]]
=== Add a New Table: brick_admin:add_table()

[[why-use-hash-prefixes]]
==== Why use hash prefixes?

Hash prefixes allow Hibari servers to guarantee the application
developer that certain keys will always be stored on the same chain
and therefore always on the same set of bricks. With this guarantee,
an application aware of hash prefixes can use micro-transactions
successfully.

For example, assume the application requires a collection of
persistent stacks that are stored in Hibari.

	Each stack is identified by a string/binary. (The two types are
identical for the sake of discussion.)

	Each item stored on the stack is a string.

	Support stack options push & pop.

	Support quick stack stats, e.g. # of elements on the stack and # of
bytes stored on the stack.

	Stacks may contain hundreds of thousands of items.

	The total size of a stack will not exceed the total storage capacity
of any single brick in the cluster.

IMPORTANT: Understanding the last assumption is vital. Because all
keys with the same hash prefix H will be managed by the same chain
C, then all bricks in C must have enough capacity to store all H
prefix keys.

The application developer then makes the following decisions:

	The application will use a table devoted to storing stacks, called
‘stack’.

	We know that the application requires strong durability (which is
the Hibari default) and that the sum total of all stack items will
exceed a single brick’s RAM capacity. Therefore, the ‘stack’
table must store its value blobs on disk. Read access to the table
will be slower than if value blobs were stored in RAM, but the
limited RAM capacity of bricks does not give us a choice.

	We have two machines, boxA and boxB, available for hosting the
table’s logical bricks.
We want to be able to survive at least one physical brick failure,
therefore all chains have a minimum length of 2.

	** We will use two chains, so that each physical machine (when up and

	running smoothly) will have 2 logical bricks for the table, one in
the chain head role and one in the chain tail role.

	** The naming scheme used for each chain name and brick name can be

	arbitrary, as long as all names are unique. However, for
ease-of-management purposes, the use of a systematic naming scheme
is strongly encouraged. The scheme used here numbers each chain
(starting at 1) and numbers each brick (also starting at 1) with
both the chain and brick number.

4. We use the following key naming convention:
** A stack’s metadata (item count, byte count) uses <<”/StackName/md”>>.
** A item uses <<”/StackName/N”>> where N is the item number.
5. We create the table using the following:
+
————————
Opts = [{hash_init, fun brick_admin:chash_init/3}, {prefix_method, var_prefix},

{num_separators, 2}, {prefix_separator, $/},
{new_chainweights, [{stack_ch1, 100}, {stack_ch2, 100}]},
{bigdata_dir, ”.”}, {do_logging, true}, {do_sync, true}].

	ChainList = [{stack_ch1, [{stack_ch1_b1, hibari1@boxA},

	
{stack_ch1_b2, hibari1@boxB}]},

	{stack_ch1, [{stack_ch2_b1, hibari1@boxB},

	{stack_ch2_b2, hibari1@boxA}]}].

brick_admin:add_table(stack, ChainList, Opts).

See xref:examples-using-the-stack[] for sample usage code.

[[types-of-brick-admin-add-table]]
==== Types for brick_admin:add_table()

	add_table(Name, ChainList, BrickOptions)

	when is_atom(Name), is_list(ChainList)
equivalent to add_table(brick_admin, Name, ChainList, BrickOptions)

	add_table(ServerRef, Name, BrickOptions)

	when is_atom(Name), is_list(BrickOptions)
equivalent to add_table(ServerRef, Name, ChainList, [])

	add_table(ServerRef::gen_server_serverref(), Name::table(),

	ChainList::chain_list(), BrickOptions::brick_options())

	-> ok |

	{error, term()} |
{error, term(), term()}

gen_server_serverref() = “ServerRef” type from STDLIB gen_server, gen_fsm, etc.
proplists_property() = “Property” type from STDLIB proplists

bigdata_option() = {‘bigdata_dir’, string()}
brick() = {logical_brick(), node()}
brick_option() = chash_prop() |

custom_prop() |
fixed_prefix_prop() |
{‘hash_init’, fun/3} |
var_prefix_prop()

brick_options() = [brick_option]
chain_list() = {chain_name(), [brick()]}
chain_name() = atom()
chash_prop() = {‘new_chainweights’, chain_weights()} |

{‘num_separators’, integer()} |
{‘old_float_map’, float_map()} |
{‘prefix_is_integer_hack’, boolean()} |
{‘prefix_length’, integer()} |
{‘prefix_method’, ‘all’ | ‘var_prefix’ | ‘fixed_prefix’} |
{‘prefix_separator’, integer()}

chain_weights() = [{chain_name, integer()}]
custom_prop() = proplists_property()
fixed_prefix_prop() = {‘prefix_is_integer_hack’, boolean()} |

{‘prefix_length’, integer()}

logging_option() = {‘do_logging’, boolean()}
logical_brick() = atom()
node() = atom()
sync_option() = {‘do_sync’, boolean()}
table() = atom()
var_prefix_prop() = {‘num_separators’, integer()} |

{‘prefix_separator’, integer()}

{‘bigdata_dir’, string()}::
To store value blobs on disk (i.e. “big data” is true), specify this
value with any string (the string’s actual value is not used).
+
IMPORTANT: To store value blobs in RAM, this option must be omitted.
+
{‘do_logging’, boolean()}::
Specify whether all bricks in the table will log updates to disk.
If not specified, the default is true.
+
{‘do_sync’, boolean()}::
Specify whether all bricks in the table will synchronously flush all
updates to disk before responding to the client.
If not specified, the default is true.
+
{‘hash_init’, fun/3}::
Specify the hash initialization function. Of the four hash methods
bundled with Hibari, we recommend using brick_hash:chash_init/3
only.
+
{‘new_chainweights, chain_weights()}::
(For brick_admin:chash_init/3)
Specify the chainweights for this new
table. For creating a new table, this option is not used.
However, this option is used when changing a table to
add/remove chains or to change other table-related parameters.
+
{‘num_separators’, integer()}::
(For brick_admin:chash_init/3 and brick_admin:var_prefix_init/3)
For variable prefix hashes, this option specifies how many instances
of the variable prefix separator character (see ‘prefix_separator’
below) are included in the hashing prefix.
The default is 2.
+
For example, if {‘prefix_separator’, $/}, then
+
** With {‘num_separators’, 2} and key <<”/foo/bar/baz/hello”>>,

the hashing prefix is <<”/foo/”>>.

	** With {‘num_separators’, 3} and key <<”/foo/bar/baz/hello”>>,

	the hashing prefix is <<”/foo/bar/”>>.

	

{‘old_float_map’, float_map()}::
Specify the old version of the “float map”.
For creating a new table, this option is not used.
However, this option is used when changing a table to
add/remove chains or to change other table-related parameters: it
is used to create a new mapping of {table, key} -> chain that
relocates only a minimum number of keys a new chain.
+
{‘prefix_method’, ‘all’ | ‘var_prefix’ | ‘fixed_prefix’}::
(For brick_admin:chash_init/3) Specify which prefix method will be
used for consistent hashing:
+
** ‘all’: Use the entire key
** ‘var_prefix’: Use a variable-length prefix of the key
** fixed_prefix’: Use a fixed-length prefix of the key
+
{‘prefix_is_integer_hack’, boolean()}::
(For brick_admin:fixed_prefix_init/3)
If true, the prefix should be interpreted
as an ASCII representation of a base 10 integer for use as the
hash calculation.
+
{‘prefix_length’, integer()}::
(For brick_admin:fixed_prefix_init/3)
For a fixed-prefix hashes, this option specifies the prefix length.
+
{‘prefix_separator’, integer()}::
(For brick_admin:chash_init/3 and brick_admin:var_prefix_init/3)
For variable prefix hashes, this option specifies the
single byte ASCII value of the byte
that separates the key’s prefix from the rest of the key.
The default is $/, ASCII 47.

[[examples-using-the-stack]]
==== Examples code for using the stack

.Create a new stack

Val = #stack_md{count = 0, bytes = 0}.
brick_simple:add(stack, “/new-stack/md”, term_to_binary(Val)).
————————————————

.Push an item onto a stack

{ok, OldTS, OldVal} = brick_simple:get(stack, “/new-stack/md”).
#stack_md{count = Count, bytes = Bytes} = binary_to_term(OldVal).
NewMD = #stack_md{count = Count + 1, bytes = Bytes + size(NewItem)}.
ItemKey = “/new-stack/” ++ integer_to_list(Count).
[ok, ok] = brick_simple:do(stack,

	[brick_server:make_txn(),

	
	brick_server:make_replace(“/new-stack/md”,

	term_to_binary(NewMD),
0, [{testset, OldTS}]),

brick_server:make_add(ItemKey, NewItem)]).

.Pop an item off a stack

{ok, OldTS, OldVal} = brick_simple:get(stack, “/new-stack/md”).
#stack_md{count = Count, bytes = Bytes} = binary_to_term(OldVal).
ItemKey = “/new-stack/” ++ integer_to_list(Count - 1).
{ok, _, Item} = brick_simple:get(stack, ItemKey).
NumBytes = proplists:get_value(val_len, Ps).
NewMD = #stack_md{count = Count - 1, bytes = Bytes - size(Item)}.
[ok, ok] = brick_simple:do(stack,

	[brick_server:make_txn(),

	
	brick_server:make_replace(“/new-stack/md”,

	term_to_binary(NewMD),
0, [{testset, OldTS}]),

brick_server:make_delete(ItemKey)]).

Item.

[[delete-a-table]]
=== Delete a Table

As yet, Hibari does not have a method to delete a table. The only
methods available now are:

	Delete all files and subdirectories from the bootstrap_* brick
data directories, restart the Admin Server, and recreate all tables.
(Also known as, “Start over”.)

	Make a backup copy of all bootstrap_* brick data directories
before creating a new table. If you wish to undo, then stop Hibari
on all Admin Server-eligible nodes, remove the bootstrap_* brick
data directories, restore the bootstrap_* brick data directories
from the previous backup, then start all of the Admin
Server-eligible nodes.

[[change-a-chain-add-remove-bricks]]
=== Change a Chain: Add or Remove Bricks

Adding or removing bricks from a single chain changes the replication
factor for the keys stored in that chain: more bricks increases the
replication factor, and fewer bricks decreases it.

.Data types for brick_admin:change_chain_length()

brick_admin:change_chain_length(ChainName, BrickList)

ChainName = atom()
BrickList = [brick()]

brick() = {logical_brick(), node()}
logical_brick() = atom()
node() = atom()
————————————–

See also,
xref:example-change-chain-length[brick_admin:change_chain_length() usage examples].

[[change-a-table-add-remove-chains]]
=== Change a Table: Add/Remove Chains

.Data types for brick_admin:start_migration()

	brick_admin:start_migration(TableName, LH)

	equivalent to brick_admin:start_migration(TableName, LH, [])

brick_admin:start_migration(TableName, LH, Options)
-> {ok, cookie()} |

{‘EXIT’, term()}

TableName = atom()
LH = hash_r()
Options = migration_options()

cookie() = term()
migration_option() = {‘do_not_initiate_serial_ack’, boolean()} |

{‘interval’, integer()} |
{‘max_keys_per_chain’, integer()} |
{‘max_keys_per_iter’, integer()} |
{‘propagation_delay’, integer()}

migration_options() = [migration_option()]

brick_admin:chash_init(‘via_proplist’, ChainList, Options)
-> hash_r()

ChainList = chain_list()
Options = brick_options()
————————————–

See xref:types-of-brick-admin-add-table[] for definitions of
chain_list() and brick_options() types.

The hash_r() type is an Erlang record, #hash_r as defined in the
brick_hash.hrl header file. It is normally considered an opaque
type that is created by a function such as brick_hash:chash_init/3.

NOTE: The options list passed in argument #3 to
brick_admin:chash_init/3 is the same properties list that is used
for brick_admin:add_table/3. The difference is that the options
that are related strictly to brick behavior, such as the do_logging
and do_sync properties, are ignored by chash_init/3.

Once a hash_r() term is created and brick_admin:start_migration/2
is called successfully, the data migration will start immediately.

The cookie() type is an opaque term that uniquely identifies the
data migration that was triggered for the TableName table. Another
data migration may not be triggered until the current migration has
finished successfully.

The migration_option() properties are described below:

{‘do_not_initiate_serial_ack’, boolean()}::
For internal use only, do not use.
+
{‘interval’, integer()}::
Interval (in milliseconds) to send kick_next_sweep messages.
Default = 50.
+
{‘max_keys_per_chain’, integer()}::
Maximum number of keys
to send to any particular chain. Not yet implemented.
+
{‘max_keys_per_iter’, integer()}::
Maximum number of keys to examine per sweep iteration.
Default = 500 for bricks with value blobs in RAM, 25 for bricks with
value blobs on disk.
+
{‘propagation_delay’, integer()}::
Number of milliseconds to delay for each brick’s logging operation.
Default = 0.

See also xref:changing-chains-example[].

[[change-a-table-chain-chain-weighting]]
=== Change a Table: Change Chain Weighting

The functions to change chain weighting are the same for
adding/removing chains, see xref:change-a-table-add-remove-chains[]
for additional details.

When creating a hash_r() type record, follow these two bits of
advice:

	The chain_list() term remains exactly the same as the chain list
currently used by the table. See
brick_admin:get_table_chain_list/1 for how to retrieve this list.

	The new_chainweights property in the brick_options() list
specifies a different set of chain weighting factors than is
currently used by the table. The current chain weighting list is in
the brick_options property returned by the
brick_admin:get_table_info/1 function.

See also xref:changing-chains-example[].

[[admin-server-api]]
=== Admin Server API

See EDoc documentation for brick_admin.erl API.

[[scoreboard-api]]
=== Scoreboard API

See EDoc documentation for brick_sb.erl API.

[[chain-monitor-api]]
=== Chain Monitor API

See EDoc documentation for brick_chainmon.erl API.

[[changing-chain-length]]
=== Changing Chain Length: Examples

The Admin Server’s basic definition of a chain: the chains name, and
the list of bricks. In turn, each brick is defined by a 2-tuple of
brick name and node name.

	Example chain definition, chain length=1

	{tab1_ch1, [{tab1_ch1_b1, hibari1@bb3}]}

The function brick_admin:get_table_chain_list/1 will retrieve the
active chain definition list for a table. For example, we retrieve the
chain definition list for the table tab1. The node bb3 is the
hostname of my laptop.

(hibari1@bb3)24> Tab1ChList.
[{tab1_ch1,[{tab1_ch1_b1,hibari1@bb3}]}]
———-

NOTE: The brick_admin:get_table_chain_list/1 function will retrieve
the active chain definition list for a table: only bricks that are in
ok state will be shown. If a chain has a brick that has crashed,
that brick will not appear in the list returned by this function. The
brick_admin:get_table_info() function can fetch the list of all
bricks, in service and crashed, but the API is not as convenient.

[[example-change-chain-length]]
To change the chain length, use the
brick_admin:change_chain_length/2 function. The arguments are the
chain name and brick list.

NOTE: Any bricks in the brick list that aren’t in the chain are
automatically started. Any bricks in the current chain that are not in
the new list are halted, and their persistent data will be deleted.

// JWN: The deletion is not immediate on disk - correct? Scavenger is
// needed - right?

ok

	(hibari1@bb3)30> {ok, Tab1ChList2} = brick_admin:get_table_chain_list(tab1). {ok,[{tab1_ch1,[{tab1_ch1_b1,hibari1@bb3},

	{tab1_ch1_b2,hibari1@bb3}]}]}

Now the tab1_ch1 chain has length two. We’ll shorten it back down
to length 1.

(hibari1@bb3)32> {ok, Tab1ChList3} = brick_admin:get_table_chain_list(tab1).
{ok,[{tab1_ch1,[{tab1_ch1_b2,hibari1@bb3}]}]}
—————-

NOTE: A chain’s new brick list must contain at least one brick from
the current chain’s definition. If the intersection of old brick list
and new brick list is empty, the command will fail.

[[changing-chains-example]]
=== Creating and Rebalancing Chains: Examples

The procedure for creating new chains, deleting existing chains, and
reweighing existing chains, and rehashing is done using the the
brick_admin:start_migration() function. The chain definitions are
specified in the same way as changing chain lengths, see
xref:changing-chain-length[] for details.

The data structure required by brick_admin:start_migration/2 is more
complex than the relatively-simple brick list that
brick_admin:change_chain_length/2 requires. This section will
demonstrate the creation of this structure, the ``local hash record’‘,
step-by-step.

First, we create a new chain definition list. (Refer to
xref:changing-chain-length[] if necessary.) For this example, we’ll
assume that we’ll be modifying the tab1 table and that we’ll be
adding two more chains. Each chain will be of length one. We’ll
place each chain on the same node as everything else, hibari1@bb3
(i.e. my laptop).

	(hibari1@bb3)49> NewCL = [{tab1_ch1, [{tab1_ch1_b1, hibari1@bb3}]},

	{tab1_ch2, [{tab1_ch2_b1, hibari1@bb3}]},
{tab1_ch3, [{tab1_ch3_b1, hibari1@bb3}]}].

	[{tab1_ch1,[{tab1_ch1_b1,hibari1@bb3}]},

	{tab1_ch2,[{tab1_ch2_b1,hibari1@bb3}]},
{tab1_ch3,[{tab1_ch3_b1,hibari1@bb3}]}]

NOTE: Any bricks in the brick list that aren’t in a chain are
automatically started. Any bricks in a current chains that are not in
the chain definition are halted, and their persistent data will be
deleted.

Next, we retrieve the table’s current hashing configuration. The data
is returned to us in the form of an Erlang property list. (See the
Erlang/OTP documentation for the proplists module, located in the
“Basic Applications” area under “stdlib”.) We then pick out several
properties that we’ll need later; we use lists:keyfind/3 instead of
a function in the proplists module because it will preserve the
properties in 2-tuple form, which will save us some typing effort
later.

...lots of stuff omitted...

(hibari1@bb3)53> Opts = proplists:get_value(brick_options, TabInfo).
[{hash_init,#Fun<brick_hash.chash_init.3>},

{old_float_map,[]},
{new_chainweights,[{tab1_ch1,100}]},
{hash_init,#Fun<brick_hash.chash_init.3>},
{prefix_method,var_prefix},
{prefix_separator,47},
{num_separators,3},
{bigdata_dir,”cwd”},
{do_logging,true},
{do_sync,true},
{created_date,{2010,4,17}},
{created_time,{17,21,58}}]

(hibari1@bb3)58> PrefixMethod = lists:keyfind(prefix_method, 1, Opts).
{prefix_method,var_prefix}

(hibari1@bb3)59> NumSep = lists:keyfind(num_separators, 1, Opts).
{num_separators,3}

(hibari1@bb3)60> PrefixSep = lists:keyfind(prefix_separator, 1, Opts).
{prefix_separator,47}

(hibari1@bb3)61> OldCWs = proplists:get_value(new_chainweights, Opts).
[{tab1_ch1,100}]

(hibari1@bb3)62> OldGH = proplists:get_value(ghash, TabInfo).

(hibari1@bb3)63> OldFloatMap = brick_hash:chash_extract_new_float_map(OldGH).

Next, we create a new property list.

	(hibari1@bb3)72> NewOpts = [PrefixMethod, NumSep, PrefixSep,

	{new_chainweights, NewCWs},
{old_float_map, OldFloatMap}].

	[{prefix_method,var_prefix},

	{num_separators,3},
{prefix_separator,47},
{new_chainweights,[{tab1_ch1,100},

{tab1_ch2,100},
{tab1_ch3,100}]}

{old_float_map, []}]

Next, we use the chain definition list, NewCL, and the table options
list, NewOpts, to create a ``local hash’’ record. This record will
contain all of the configuration information required to change a
table’s consistent hashing characteristics.

...lots of stuff omitted...

[[chash-migration-pre-check]]
We’re just one step away from changing the tab1 table. Before we
change the table, however, we’d like to see how the table change will
affect the data in the table. First, we add 1,000 keys to the tab1
table. Then we use the brick_simple:chash_migration_pre_check/2
function to tell us how many keys will move and to where.

ok,ok,ok,ok,ok,ok,ok,ok,ok,ok|...]

(hibari1@bb3)75> brick_simple:chash_migration_pre_check(tab1, NewLH).
[{keys_before,[{tab1_ch1,1001}]},

{keys_keep,[{tab1_ch1,348}]},
{keys_moving,[{tab1_ch2,315},{tab1_ch3,338}]},
{keys_moving_where,[{tab1_ch1,[{tab1_ch2,315},

{tab1_ch3,338}]}]},

{errors,[]}]

The output above shows us that of the 1,001 keys in the tab1 table,
348 will remain in the tab1_ch1 chain, 315 keys will move to the
tab1_ch2 chain, and 338 keys will move to the tab1_ch3 chain.
That looks like what we want, so let’s reconfigure the table and start
the data migration.

brick_admin:start_migration(tab1, NewLH).

Immediately, we’ll see a bunch of application messages sent to the
console as new activities start:

	A migration monitoring process is started.

	New brick processes are started.

	New monitoring processes are started.

	Data migrations are started and finish

	The migration monitoring process exits.

=GMT INFO REPORT==== 20-Apr-2010::00:26:41 ===
progress: [{supervisor,{local,brick_mon_sup}},

	{started,

	
	[{pid,<0.2937.0>},

	{name,chmon_tab1_ch2},
...stuff omitted...

[...lines skipped...]
=GMT INFO REPORT==== 20-Apr-2010::00:26:41 ===
Migration monitor: tab1: chains starting

[...lines skipped...]
=GMT INFO REPORT==== 20-Apr-2010::00:26:41 ===
brick_admin: handle_cast: chain tab1_ch2 in unknown state

[...lines skipped...]
=GMT INFO REPORT==== 20-Apr-2010::00:26:52 ===
Migration monitor: tab1: sweeps starting

[...lines skipped...]
=GMT INFO REPORT==== 20-Apr-2010::00:26:54 ===
Migration number 1 finished

[...lines skipped...]
=GMT INFO REPORT==== 20-Apr-2010::00:26:57 ===
Clearing final migration state for table tab1
—————

For the sake of demonstration, now let’s see what
brick_simple:chash_migration_pre_check() would say if we were to
migrate from three chains to four chains.

(hibari_dev@bb3)25> Opts3 = proplists:get_value(brick_options, TabInfo3).

(hibari_dev@bb3)26> GH3 = proplists:get_value(ghash, TabInfo3).

(hibari_dev@bb3)28> OldFloatMap = brick_hash:chash_extract_new_float_map(GH3).

	(hibari_dev@bb3)31> NewOpts4 = [PrefixMethod, NumSep, PrefixSep,

	{new_chainweights, NewCWs4}, {old_float_map, OldFloatMap}].

	(hibari_dev@bb3)35> NewCL4 = [{tab1_ch1, [{tab1_ch1_b1, hibari1@bb3}]},

	{tab1_ch2, [{tab1_ch2_b1, hibari1@bb3}]},
{tab1_ch3, [{tab1_ch3_b1, hibari1@bb3}]},
{tab1_ch4, [{tab1_ch4_b1, hibari1@bb3}]}].

(hibari_dev@bb3)36> NewLH4 = brick_hash:chash_init(via_proplist, NewCL4, NewOpts4).

(hibari_dev@bb3)37> brick_simple:chash_migration_pre_check(tab1, NewLH4).
[{keys_before,[{tab1_ch1,349},

{tab1_ch2,315},
{tab1_ch3,337}]},

{keys_keep,[{tab1_ch1,250},{tab1_ch2,232},{tab1_ch3,232}]},
{keys_moving,[{tab1_ch4,287}]},
{keys_moving_where,[{tab1_ch1,[{tab1_ch4,99}]},

{tab1_ch2,[{tab1_ch4,83}]},
{tab1_ch3,[{tab1_ch4,105}]}]},

{errors,[]}]

The output tells us that chain tab1_ch1 will lose 99 keys,
tab1_ch2 will lose 83 keys, and tab1_ch3 will lose 105 keys. The
final key distribution across the four chains would be 250, 232, 232,
and 287 keys, respectively.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Hibari Contributor’s Guide (Hibari v0.1.11)

DRAFT - IN PROGRESS

Date: 2015/03/22

Revision: 0.5.4

Copyright (C) 2005-2015 Hibari developers. All rights reserved.

Table of Contents

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Hibari DB 0.1.11 documentation

Copyright Notices

Copyright (C) 2005-2015 Hibari developers. All rights reserved.

Hibari is open sourced under the Apache License, Version 2.0.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Hibari DB 0.1.11 documentation

 Erlang Module Index

 b

 			

 		
 b	

 	
 	
 brick_simple	

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Hibari DB 0.1.11 documentation

Index

 B

B

 	

 	brick_simple (module), [1]

 	brick_simple:add/3 (Erlang function)

 	brick_simple:add/3..6 (Erlang function)

 	brick_simple:add/4 (Erlang function), [1]

 	brick_simple:add/6 (Erlang function)

 	brick_simple:delete/2 (Erlang function)

 	brick_simple:delete/3 (Erlang function), [1]

 	brick_simple:delete/4 (Erlang function)

 	brick_simple:do/2 (Erlang function)

 	brick_simple:do/3 (Erlang function)

 	brick_simple:do/4 (Erlang function)

 	brick_simple:fold_key_prefix/5 (Erlang function)

 	brick_simple:fold_key_prefix/9 (Erlang function)

 	brick_simple:fold_table/5 (Erlang function)

 	brick_simple:fold_table/6 (Erlang function)

 	brick_simple:fold_table/7 (Erlang function)

 	brick_simple:get/2 (Erlang function)

 	

 	brick_simple:get/3 (Erlang function), [1]

 	brick_simple:get/4 (Erlang function)

 	brick_simple:get_many/3 (Erlang function)

 	brick_simple:get_many/4 (Erlang function), [1]

 	brick_simple:get_many/5 (Erlang function)

 	brick_simple:rename/3 (Erlang function)

 	brick_simple:rename/3..6 (Erlang function)

 	brick_simple:rename/4 (Erlang function), [1]

 	brick_simple:rename/6 (Erlang function)

 	brick_simple:replace/3 (Erlang function)

 	brick_simple:replace/3..6 (Erlang function)

 	brick_simple:replace/4 (Erlang function), [1]

 	brick_simple:replace/6 (Erlang function)

 	brick_simple:set/3 (Erlang function)

 	brick_simple:set/3..6 (Erlang function)

 	brick_simple:set/4 (Erlang function), [1]

 	brick_simple:set/6 (Erlang function)

 Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/file.png

_static/up-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Hibari DB 0.1.11 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2005-2015, Hibari developers.
 Created using Sphinx 1.2.2.

_static/down.png

